Skip to main content
Log in

Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Modification of oleic acid (C18:1) and linolenic acid (C18:3) contents in seeds is one of the major goals for quality breeding after removal of erucic acid in oilseed rape (Brassica napus). The fatty acid desaturase genes FAD2 and FAD3 have been shown as the major genes for the control of C18:1 and C18:3 contents. However, the genome structure and locus distributions of the two gene families in amphidiploid B. napus are still not completely understood to date. In the present study, all copies of FAD2 and FAD3 genes in the A- and C-genome of B. napus and its two diploid progenitor species, Brassica rapa and Brassica oleracea, were identified through bioinformatic analysis and extensive molecular cloning. Two FAD2 genes exist in B. rapa and B. oleracea, and four copies of FAD2 genes exist in B. napus. Three and six copies of FAD3 genes were identified in diploid species and amphidiploid species, respectively. The genetic control of high C18:1 and low C18:3 contents in a double haploid population was investigated through mapping of the quantitative trait loci (QTL) for the traits and the molecular cloning of the underlying genes. One major QTL of BnaA.FAD2.a located on A5 chromosome was responsible for the high C18:1 content. A deleted mutation in the BnaA.FAD2.a locus was uncovered, which represented a previously unidentified allele for the high oleic variation in B. napus species. Two major QTLs on A4 and C4 chromosomes were found to be responsible for the low C18:3 content in the DH population as well as in SW Hickory. Furthermore, several single base pair changes in BnaA.FAD3.b and BnaC.FAD3.b were identified to cause the phenotype of low C18:3 content. Based on the results of genetic mapping and identified sequences, allele-specific markers were developed for FAD2 and FAD3 genes. Particularly, single-nucleotide amplified polymorphisms markers for FAD3 alleles were demonstrated to be a reliable type of SNP markers for unambiguous identification of genotypes with different content of C18:3 in amphidiploid B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arondel V, Lemieux B, Hwang I, Gibson S, Goodman HM, Somerville CR (1992) Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science 258:1353–1355

    Article  PubMed  CAS  Google Scholar 

  • Barret P, Delourme R, Brunel D, Jourdren C, Horvais R, Renard M (1999) Low linolenic acid level in rapeseed can be easily assessed through the detection of two single base substitution in fad3 genes. In: Proceedings of the 10th international rapeseed congress: new horizons for an old crop. Canberra, Australia. Available at http://www.regional.org.au/au/gcirc/4/385.htm

  • Broun P, Shanklin J, Whittle E, Somerville C (1998) Catalytic plasticity of fatty acid modification enzymes underlying chemical diversity of plant lipids. Science 282:1315–1317

    Article  PubMed  CAS  Google Scholar 

  • Cha RS, Zarbl H, Keohavong P, Thilly WG (1992) Mismatch amplification mutation assay (MAMA): application to the c-H-ras gene. PCR Methods Appl 2:14–20

    PubMed  CAS  Google Scholar 

  • Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Covello PS, Reed DW (1996) Functional expression of the extraplastidial Arabidopsis thaliana oleate desaturase gene (FAD2) in Saccharomyces cerevisiae. Plant Physiol 111:223–226

    Article  PubMed  CAS  Google Scholar 

  • Drenkard E, Richter B, Rozen S, Stutius L, Angell N, Mindrinos M, Cho R, Oefner P, Davis R, Ausubel F (2000) A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis. Plant Physiol 124:1483–1492

    Article  PubMed  CAS  Google Scholar 

  • Fan C, Cai G, Qin J, Li Q, Yang M, Wu J, Fu T, Liu K, Zhou Y (2010) Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor Appl Genet 121:1289–1301

    Article  PubMed  CAS  Google Scholar 

  • Guo A, Zhu Q, Chen X, Luo J (2007) GSDS: a gene structure display server. Yi Chuan 29:1023–1026

    PubMed  CAS  Google Scholar 

  • Henikoff S, Henikoff JG (1993) Performance evaluation of amino acid substitution matrices. Proteins 17:49–61

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Quiros C, Arus P, Strass D, Robbelen G (1995) Mapping of a gene determining linolenic acid concentration in rapeseed with DNA-based markers. Theor Appl Genet 90:258–262

    CAS  Google Scholar 

  • Hu J, Li G, Struss D, Quiros C (1999) SCAR and RAPD markers associated with 18 carbon fatty acids in rapeseed, Brassica napus. Plant Breed 118:145–150

    Article  CAS  Google Scholar 

  • Hu XY, Sullivan-Gilbert M, Gupta M, Thompson SA (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113:497–507

    Article  PubMed  CAS  Google Scholar 

  • Hu XY, Sullivan-Gilbert M, Gupta M, Thompson SA (2007) G-to-A mutation at a 5′ splice site of fad3c caused impaired splicing in a low linolenic mutant of canola (Brassica napus L.). Plant Biotechnol 24:397–400

    Article  CAS  Google Scholar 

  • Javidfar F, Ripley VL, Roslinsky V, Zeinali H, Abdmishani C (2006) Identification of molecular markers associated with oleic and linolenic acid in spring oilseed rape (Brassica napus). Plant Breed 125:65–71

    Article  CAS  Google Scholar 

  • Jourdren C, Barret P, Brunel D, Delourme R, Renard M (1996a) Specific molecular marker of the genes controlling linolenic acid content in rapeseed. Theor Appl Genet 93:512–518

    Article  CAS  Google Scholar 

  • Jourdren C, Barret P, Horvais R, Delourme R, Renard M (1996b) Identification of RAPD markers linked to linolenic acid genes in rapeseed. Euphytica 90:351–357

    Article  CAS  Google Scholar 

  • Kwok S, Kellogg D, McKinney N, Spasic D, Goda L, Levenson C, Sninsky J (1990) Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res 18:999–1005

    Article  PubMed  CAS  Google Scholar 

  • Kwok S, Chang S-Y, Sninsky JJ, Wang A (1994) A guide to the design and use of mismatched and degenerate primers. PCR Methods Appl 3:S39–S47

    PubMed  CAS  Google Scholar 

  • Lemieux B, Miquel M, Somerville C, Browse J (1990) Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. Theor Appl Genet 80:234–240

    Article  CAS  Google Scholar 

  • Li H, Cui X, Arnheim N (1990) Direct electrophoretic detection of the allelic state of single DNA molecules in human sperm by using the polymerase chain reaction. Proc Natl Acad Sci USA 87:4580–4584

    Article  PubMed  CAS  Google Scholar 

  • Matthäus B (2006) Utilization of high-oleic rapeseed oil for deep-fat frying of French fries compared to other commonly used edible oils. Eur J Lipid Sci Technol 108:200–211

    Article  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    Article  PubMed  CAS  Google Scholar 

  • Mikolajczyk K, Dabert M, Karlowski W, Spasibionek S, Nowakowska J, Cegielska-Taras T, Bartkowiak-Broda I (2010) Allele-specific SNP markers for the new low linolenic mutant genotype of winter oilseed rape. Plant Breed 129:502–507

    CAS  Google Scholar 

  • Miquel M (1992) Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase. J Biol Chem 267:1502–1509

    PubMed  CAS  Google Scholar 

  • Miquel M, James D, Dooner H, Browse J (1993) Arabidopsis requires polyunsaturated lipids for low temperature survival. Proc Natl Acad Sci USA 90:6208–6212

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotechnol 14:214–219

    Article  PubMed  CAS  Google Scholar 

  • Newton C, Graham A, Heptinstall L, Powell S, Summers C, Kalsheker N, Smith J, Markham A (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17:2503–2516

    Article  PubMed  CAS  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6:147–158

    PubMed  CAS  Google Scholar 

  • Østergaard L, King GJ (2008) Standardized gene nomenclature for the Brassica genus. Plant Methods 4:10

    Article  PubMed  Google Scholar 

  • Pinzi S, Garcia I, Lopez-Gimenez F, Luque de Castro M, Dorado G, Dorado M (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuels 23:2325–2341

    Article  CAS  Google Scholar 

  • Rajcan I, Kasha K, Kott L, Beversdorf W (1999) Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L.). Euphytica 105:173–181

    Article  CAS  Google Scholar 

  • Rakow G (1973) Selektion auf linol- und linolen-saureghalt in rapssamen nach mutagener behand-lung. Z Planzen 69:205–209

    Google Scholar 

  • Röbbelen G, Nitsch A (1975) Genetical and physiological investigations on mutants for polyenoic fatty acids in rapeseed, Brassica napus L. I. Selection and description of new mutants. Z Pflanzenzucht 75:92–105

    Google Scholar 

  • Scarth RT, Tang JH (2006) Modification of oil using conventional and transgenic approaches. Crop Sci 46:1225–1236

    Article  CAS  Google Scholar 

  • Scarth R, McVetty P, Rimmer S, Stefansson B (1988) Stellar low linolenic-high linoleic acid summer rape. Can J Plant Sci 68:509–511

    Article  CAS  Google Scholar 

  • Scheffler J, Sharpe A, Schmidt H, Sperling P, Parkin I, Lühs W, Lydiate D, Heinz E (1997) Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet 94:583–591

    Article  CAS  Google Scholar 

  • Schierholt A, Becker H, Ecke W (2000) Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L.). Theor Appl Genet 101:897–901

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tanhuanpää P, Schulman A (2002) Mapping of genes affecting linolenic acid content in Brassica rapa ssp. oleifera. Mol Breed 10:51–62

    Article  Google Scholar 

  • Tanhuanpää P, Vilkki J, Vilkki H (1995) Association of a RAPD marker with linolenic acid concentration in the seed oil of rapeseed (Brassica napus L.). Genome 38:414–416

    Article  PubMed  Google Scholar 

  • Tanhuanpää P, Vilkki J, Vilkki H (1996) Mapping of a QTL for oleic acid concentration in spring turnip rape (Brassica rapa ssp. oleifera). Theor Appl Genet 92:952–956

    Article  Google Scholar 

  • Tanhuanpää P, Vilkki J, Vihinen M (1998) Mapping and cloning of FAD2 gene to develop allele-specific PCR for oleic acid in spring turnip rape (Brassica rapa ssp. oleifera). Mol Breed 4:543–550

    Article  Google Scholar 

  • Teutonico R, Osborn T (1994) Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Theor Appl Genet 89:885–894

    Article  CAS  Google Scholar 

  • Thies W (1971) Schnelle und einfache Analysen der Fettsäurezusammensetzung in einzelnen Rapskotyledonen I. Gaschromatographische und papierchromatographische Methoden. Z Pflanzenzücht 65:181–202

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Thormann C, Romero J, Mantet J, Osborn T (1996) Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93:282–286

    Article  CAS  Google Scholar 

  • Ugozzoli L, Wallace RB (1992) Application of an allele-specific polymerase chain reaction to the direct determination of ABO blood group genotypes. Genomics 12:670–674

    Article  PubMed  CAS  Google Scholar 

  • Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204

    Article  CAS  Google Scholar 

  • Warner K, Knowlton S (1997) Frying quality and oxidative stability of high-oleic corn oils. J Am Oil Chem Soc 74:1317–1322

    Article  CAS  Google Scholar 

  • Wittkop B, Snowdon R, Friedt W (2009) Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170:131–140

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Bo Gertsson, Lantmännen SW Seed, for providing the seeds of SW Hickory. We are grateful to Miss Christy Zhou at Duke University for critical reading of the manuscript. This research was financially supported by China National High-tech R&D Program (2006AA101A113) and the earmarked fund for Modern Agro-industry Technology Research System (nycytx-00503) to YZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Zhou.

Additional information

Communicated by R. Visser.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 37 kb)

122_2012_1863_MOESM2_ESM.doc

Supplementary Fig. S1 Alignment of the genomic nucleotide sequences of FAD2 genes from Arabidopsis (AT3G12120.1), B. rapa, B. oleracea and B. napus. All gene nomenclature followed the rules proposed by Østergaard and King (2008), identical nucleotides among all the sequences are indicated with asterisks (DOC 44 kb)

122_2012_1863_MOESM3_ESM.doc

Supplementary Fig. S2 Alignment of putative amino acids sequences of FAD2 genes from Arabidopsis (AT3G12120.1), B. rapa, B. oleracea and B. napus as presented in Fig. S1 (DOC 173 kb)

122_2012_1863_MOESM4_ESM.doc

Supplementary Fig. S3 Alignment of the genomic nucleotide sequences of FAD3 genes from Arabidopsis (AT2G29980.1), B. rapa, B. oleracea and B. napus. All gene nomenclature followed the rules proposed by Østergaard and King (2008). The putative CDS or cDNA sequences are shown in capital letters; the introns are in lowercase letters, identical nucleotides among all the sequences are indicated with asterisks. ←: The copy-specific primers binding sites, ▲: The SNP sites between BnaA.FAD3.b and BnaC.FAD3.b, ▽: Additional mismatch base sites in the copy-specific primers (DOC 191 kb)

122_2012_1863_MOESM5_ESM.doc

Supplementary Fig. S4 Diagrammatic presentation of the gene structure of FAD3 identified in Brassica napus. Black boxes and solid lines represent exon and intron, respectively. Arrow heads mark the positions for designing primers used in cloning the FAD3 genomic DNA in B. napus. The identity for each primer is supplied above the arrowhead and the primer sequences are provided in Supplementary Table S1 (DOC 214 kb)

122_2012_1863_MOESM6_ESM.doc

Supplementary Fig. S5 Alignment of putative amino acids sequences of FAD3 genes from Arabidopsis (AT2G29980.1), B. rapa, B. oleracea and B. napus (DOC 98 kb)

122_2012_1863_MOESM7_ESM.doc

Supplementary Fig. S6 The genetic linkage map and QTLs for C18:1, C18:2 and C18:3 detected with SSR markers and allele-specific markers in the SJ DH population in three years. The bar to the left of the LG indicates the 1-LOD confidence interval for the QTL and the triangle indicates the QTL peak position. (DOC 545 kb)

Supplementary Table S1 (DOC 44 kb)

Supplementary Table S2 (DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Q., Fan, C., Guo, Z. et al. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet 125, 715–729 (2012). https://doi.org/10.1007/s00122-012-1863-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1863-1

Keywords

Navigation