Skip to main content

Advertisement

Log in

Responses of symbiotic N2 fixation in Alnus species to the projected elevated CO2 environment

  • Review
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Nitrogen fixation in Alnus species in response to elevated CO 2 may depend on the presence of non-N 2 -fixing tree species in addition to soil conditions.

Abstract

Alnus is a major genus of actinorhizal plants. Symbiosis with Frankia allows the Alnus species to fix nitrogen (N) at the rate of several to 320 kg N ha−1 year−1 with a nodule biomass of 16–480 kg ha−1. Alnus species ensures an effective supply of N to soils because of the high N content of leaf litter, rapid decomposition rate, and the influx of herbivorous insects. In addition, the association between regenerated endozoochorous species and Alnus hirsuta suggests that N2 fixation in Alnus species influences the distribution patterns of regenerated plants as well as improve soil fertility. N2 fixation by the AlnusFrankia symbiotic relationship may be positively associated with elevated carbon dioxide (CO2) levels. Nodule biomass increased under elevated CO2 due to enhanced plant growth, rather than changes in biomass allocation. The inhibitory effect of high soil N on nodulation was retained under elevated CO2, and the effects of elevated CO2 on N2 fixation depended on soil P availability, drought, and many other abiotic and biotic factors. Recent free-air CO2 enrichment experiments have demonstrated increased N2 fixation in A. glutinosa exposed to elevated CO2 in mixed-species stands containing non-N2-fixers but not in monocultures, suggesting that N2 fixation depends on an association with non-N2-fixing tree species. Because elevated CO2 can alter the N and P contents and stoichiometry of plants, it will be necessary to evaluate N allocation and accumulation of biomass when investigating the response of Alnus species to future global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agari T, Matsuki S, Tobita H et al (2007) The effects of elevated CO2 and soil fertility on the defense capacity against herbivore in two species of alder seedlings. Trans Mtg Hokkaido Br For Soc 55:56–58 (in Japanese)

    Google Scholar 

  • Ainsworth EA, Long SP (2004) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Akkermans ADL, van Dijk C (1976) The formation and nitrogen-fixing activity of the root nodules of Alnus glutinosa under field conditions. In: Nutman PS (ed) Symbiotic nitrogen fixation in plants. Cambridge University Press, London, pp 511–520

    Google Scholar 

  • Anderson MD, Ruess RW, Myrold DD, Taylor DL (2009) Host species and habitat affect nodulation by specific Frankia genotypes in two species of Alnus in interior Alaska. Oecologia 160:619–630

    Article  PubMed  Google Scholar 

  • Anderson MD, Taylor DL, Ruess RW (2013) Phylogeny and assemblage composition of Frankia in Alnus tenuifolia nodules across a primary successional sere in interior Alaska. Molecular Ecol 22:3864–3877

    Article  CAS  Google Scholar 

  • Aosaar J, Varik M, Lõhmus K et al (2013) Long-term study of above-and below-ground biomass production in relation to nitrogen and carbon accumulation dynamics in a grey alder (Alnus incana (L.) Moench) plantation on former agricultural land. Europ J For Res 132(5–6):737–749

    Article  CAS  Google Scholar 

  • Aranjuelo I, Molero G, Erice G et al (2011) Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J Exp Bot 62:111–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnone JA III, Gordon JC (1990) Effect of nodulation, nitrogen fixation and CO2 enrichment on the physiology, growth and dry mass allocation of seedlings of Alnus rubra Bong. New Phytol 116:55–66

    Article  CAS  Google Scholar 

  • Avendano-Yanez MD, Sanchez-Velasquez LR, Meave JA, Pineda-Lopez MD (2014) Is facilitation a promising strategy for cloud forest restoration? For Ecol Manage 329:328–333

    Article  Google Scholar 

  • Awmack CS, Mondor EB, Lindroth RL (2007) Forest understory clover populations in enriched CO2 and O3 atmosphere: interspecific, intraspecific, and indirect effects. Environ Exp Bot 59:340–346

    Article  CAS  Google Scholar 

  • Bassin S, Volk M, Fuhrer J (2013) Species composition of subalpine grassland is sensitive to nitrogen deposition, but not to ozone, after seven years of treatment. Ecosystems 16:1105–1117

    Article  CAS  Google Scholar 

  • Benson D, Dawson JO (2007) Recent advances in biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130:318–330

    Article  CAS  Google Scholar 

  • Binkley D (1981) Nodule biomass and acetylene reduction rates of red alder and Sitka alder on Vancouver Island, B.C. Can J For Res 11:181–286

    Google Scholar 

  • Binkley D (1982) Nitrogen fixation and net primary production in a young Sitka alder stand. Can J Bot 60:281–284

    Article  CAS  Google Scholar 

  • Binkley D, Sollins P, Bell R et al (1992) Biogeochemistry of adjacent conifer and alder-conifer stands. Ecology 73:2022–2033

    Article  CAS  Google Scholar 

  • Bormann BT, DeBell DS (1981) Nitrogen content and other soil properties related to age of red alder stands. Soil Sci Soc Am 45:428–432

    Article  CAS  Google Scholar 

  • Bormann BT, Gordon JC (1984) Stand density effects in young red alder plantations: productivity, photosynthate partitioning, and nitrogen fixation. Ecology 65:394–402

    Article  Google Scholar 

  • Bormann BT, Sidle RC (1990) Changes in productivity and distribution of nutrients in a chronosequence at Glacier Bay national park, Alaska. J Ecol 78:561–578

    Article  Google Scholar 

  • Brockley RP, Sanborn P (2003) Effects of Sitka alder on the growth and foliar nutrition of young lodgepole pine in the central interior of British Columbia. Can J For Res 33:1761–1771

    Article  CAS  Google Scholar 

  • Brown KR, Courtin PJ, Negrave RW (2011) Growth, foliar nutrition and δ13C responses of red alder (Alnus rubra) to phosphorus additions soon after planting on moist sites. For Ecol Manage 262:791–802

    Article  Google Scholar 

  • Bucher JB, Tarjan DP, Siegwolf RTW et al (1998) Growth of a deciduous tree seedlings community in response to elevated CO2 and nutrient supply. Chemosphere 36:777–782

    Article  CAS  Google Scholar 

  • Calfapietra C, Ainsworth EA, Beier C et al (2010) Challenges in elevated CO2 experiments on forests. Trends Plant Sci 15:5–10

    Article  CAS  PubMed  Google Scholar 

  • Chaia EE, Myrold DD (2010) Variation of 15N natural abundance in leaves and nodules of actinorhizal shrubs in Northwest Patagonia. Symbiosis 50:97–105

    Article  CAS  Google Scholar 

  • Chapin FSIII, Walker LR, Fastie CL, Sharman LC (1994) Mechanisms of primary succession following deglaciation at Glacier bay. Alaska. Ecol Monog 64(2):149–175

    Article  Google Scholar 

  • Chapin FSIII, Matson PA, Vitousek PM (2011) Principles of terrestrial ecosystem ecology, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Claessens H, Oosterbaan A, Savill P, Rondeux J (2010) A review of the characteristics of black alder (Alnus glutinosa (L.) Gaertn.) and their implications for silvicultural practices. Forestry 83:164–175

    Article  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS et al (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biochem Cycle 13:623–645

    Article  CAS  Google Scholar 

  • Cole DW, Gessel SP, Turner J (1978) Comparative mineral cycling in red alder and Douglas-fir. In: Briggs DG, DeBell DS, Atkinson WA (eds) Utilization and management of alder. USFS Pacific Northwest Forest and Range Experiment Station, Portland, OR, pp 327–336

    Google Scholar 

  • Compton JE, Church MR, Larned ST, Hogsett WE (2002) Nitrogen export from forested watersheds in the Oregon coast range: the role of N2-fixing red alder. Ecosystems 6:773–785

    Article  CAS  Google Scholar 

  • Daly GT (1966) Nitrogen fixation by nodulated Alnus rugosa. Can J Bot 44:1607–1621

    Article  CAS  Google Scholar 

  • Dawson JO (2008) Ecology of actinorhizal plants. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 119–234

    Google Scholar 

  • Dawson JO, Gordon JC (1979) Nitrogen fixation in relation to photosynthesis in Alnus glutinosa. Bot Gaz 140:S70–S75

    Article  Google Scholar 

  • DeBell DS, Radwan MA (1979) Growth and nitrogen relations of coppiced black cottonwood and red alder in pure and mixed plantings. Bot Gaz 140:S97–S101

    Article  Google Scholar 

  • Dray MW, Crowther TW, Thomas SM et al (2014) Effects of elevated CO2 on litter chemistry and subsequent invertebrate detritivores feeding responses. PLoS One 9(1):e86246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eguchi N, Karatsu K, Ueda T et al (2008a) Photosynthetic responses of birch and alder saplings grown in a free air CO2 enrichment system in northern Japan. Trees 22:437–447

    Article  CAS  Google Scholar 

  • Eguchi N, Morii N, Ueda T et al (2008b) Changes in petiole hydraulic properties and leaf water flow in birch and oak saplings in a CO2-enriched atmosphere. Tree Physiol 28:287–295

    Article  CAS  PubMed  Google Scholar 

  • Ekblad A, Huss-Danell K (1995) Nitrogen fixation by Alnus incana and nitrogen transfer from A. incana to Pinus sylvestris influenced by macronutrients and ectomycorrhiza. New Phytol 131:453–459

    Article  Google Scholar 

  • Eriksson E, Johansson T (2006) Effects of rotation period on biomass production and atmospheric CO2 emissions from broadleaved stands growing on abandoned farmland. Silva Fennica 40:603–613

    Google Scholar 

  • Feng GQ, Li Y, Cheng ZM (2014) Plant molecular and genomic responses to stresses in projected future CO2 environment. Crit Rev Plant Sci 33:238–249

    Article  CAS  Google Scholar 

  • Finzi AC, Norby RJ, Calfapietra C et al (2007) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2. Proc Nat Acad Sci USA 104:14014–14019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flexas J, Medrano H (2002) Drought-inhibition of photosynthesis in C3 plants: stomatal ad non-stomatal limitations revisited. Ann Bot 89:183–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler D, Amann M, Anderson R et al (2008) Ground-level ozone in the 21st century: future trends, impacts and policy implications. R Soc Polic Doc, London

    Google Scholar 

  • Gentili F, Huss-Danell K (2003) Local and systemic effects of phosphorus and nitrogen on nodulation and nodule function in Alnus incana. J Exp Bot 54:2757–2767

    Article  CAS  PubMed  Google Scholar 

  • Gentili F, Wall LG, Huss-Danell K (2006) Effects of phosphorus and nitrogen on nodulation are seen already at the stage of early cell divisions in Alnus incana. Ann Bot 98:309–315

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillespie KM, Xu F, Richter KT et al (2012) Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O3 under both ambient and elevated CO2. Plant Cell Environ 35:169–184

    Article  CAS  PubMed  Google Scholar 

  • Godbold D, Tullus A, Kupper P et al (2014) Elevated atmospheric CO2 and humidity delay leaf fall in Betula pendula, but not in Alnus glutinosa or Populus tremula x tremuloides. Ann For Sci 71:831–842

    Article  Google Scholar 

  • Gordon JC, Wheeler CT (1978) Whole plant studies on photosynthesis and acetylene reduction in Alnus glutinosa. New Phytol 80:179–186

    Article  CAS  Google Scholar 

  • Gtari M, Tisa LS, Normand P (2013) Diversity of Frankia Strains, actinobacterial symbionts of actinorhizal plants. In: Ricardo A (ed) Symbiotic Endophytes. Springer, Berlin Heidelberg, pp 123–148

    Chapter  Google Scholar 

  • Hanley TA, Deal RL, Orlikowska EH (2006) Relationships between red alder composition and understory vegetation in young mixed forests of southeast Alaska. Can J For Res 36:738–748

    Article  Google Scholar 

  • Hewitt DKL, Mills G, Hayes F et al (2014) Highlighting the threat from current and near-future ozone pollution to clover in pasture. Environ Pollut 189:111–117

    Article  CAS  PubMed  Google Scholar 

  • Hibbs DE, Cromack CJR (1990) Actinorhizal plants in Pacific Northwest forests. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic Press Inc, San Diego, pp 343–363

    Google Scholar 

  • Hibbs DE, Chan SS, Castellano M, Niu C-H (1995) Response of red alder seedlings to CO2 enrichment and water stress. New Phytol 129:569–577

    Article  Google Scholar 

  • Hiltbrunner E, Aerts R, Bühlmann T et al (2014) Ecological consequences of the expansion of N2-fixing plants in cold biomes. Oecologia 176:11–24

    Article  PubMed  Google Scholar 

  • Hoosbeek MR, Lukae M, Velthorst E et al (2011) Free atmospheric CO2 enrichment increased above ground biomass but did not affect symbiotic N2-fixation and soil carbon dynamics in a mixed deciduous stand in Wales. Biogeoscience 8:353–364

    Article  CAS  Google Scholar 

  • Hungate BA, Dukes JT, Shaw MR et al (2003) Nitrogen and climate change. Science 302:1512–1513

    Article  CAS  PubMed  Google Scholar 

  • Hungate BA, Stiling PD, Dijkstra P et al (2004) CO2 elicits long-term decline in nitrogen fixation. Science 304:1291

    Article  CAS  PubMed  Google Scholar 

  • Hurd TM, Raynal DJ, Schwintzer CR (2001) Symbiotic N2 fixation of Alnus incana ssp. rugosa in shrub wetlands of the Adirondack Mountains, New York. USA. Oecologia 126:94–103

    Article  Google Scholar 

  • Huss-Danell K (1990) The physiology of actinorhizal nodules. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic Press Inc, Tokyo, pp 129–156

    Google Scholar 

  • Huss-Danell K (1997) Actinorhizal symbioses and their N2 fixation. New Phytol 136:375–405

    Article  CAS  Google Scholar 

  • Huss-Danell K, Ohlsson H (1992) Distribution of biomass and nitrogen among plant parts and soil nitrogen in a young Alnus incana stand. Can J Bot 70:1545–1549

    Article  Google Scholar 

  • Huss-Danell K, Sellstedt A (1983) Nitrogenase activity in response to restricted shoot growth in Alnus incana. Can J Bot 61:2949–2955

    Article  CAS  Google Scholar 

  • Huss-Danell K, Lundquist PO, Ohlsson H (1992) N2 fixation in a young Alnus incana stand, based on seasonal and diurnal variation in whole plant nitrogenase activity. Can J Bot 70:1537–1544

    Article  CAS  Google Scholar 

  • Hytönen J, Saarsalmi A (2015) Biomass production of coppiced grey alder and the effects of fertilization. Silva Fennica 49 no. 1 article id 1260. http://dx.doi.org/10.14214/sf.1260

  • Hyvönen R, Ågren GI, Linder S et al (2007) The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol 173:463–480

    Article  PubMed  CAS  Google Scholar 

  • Ingestad T (1981) Nutrition and growth of birch and grey alder seedlings in low conductivity solutions and at varied relative rates of nutrient addition. Physiol Plant 52:454–466

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. contribution of working group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Cambridge University Press, Cambridge, UK

  • IPCC (2013) Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex B, Midgley PM (eds) Cambridge University Press, Cambridge, UK

  • Johnson DW (2006) Progressive N limitation in forest: review and implications for long-term responses to elevated CO2. Ecology 87(1):64–75

    Article  PubMed  Google Scholar 

  • Johnsrud SC (1978) Nitrogen fixation by root nodules of Alnus incana in a Norwegian forest ecosystem. Oikos 30:475–479

    Article  Google Scholar 

  • Kaelke CM, Dawson JO (2005) The accretion of nonstructural carbohydrates changes seasonally in Alnus incana ssp. rugosa in accord with tissue type, growth, N allocation, and root hypoxia. Symbiosis 39:61–66

    CAS  Google Scholar 

  • Kallarackal J, Roby TJ (2012) Responses of trees to elevated carbon dioxide and climate change. Biodivers Conserv 21:1327–1342

    Article  Google Scholar 

  • Kawaguchi K, Hoshika Y, Watanabe M, Koike T (2012) Ecophysiological responses of northern birch forests to the changing atmospheric CO2 and O3 concentration. J Atmospheric Environ 6:192–205

    Article  CAS  Google Scholar 

  • Kikuzawa K, Asai T, Higashiura Y (1979) Leaf production and the effect of defoliation by the larval population of the winter moth, Operophtera brumata L. in an alder (Alnus inokumae MURAI et KUSAKA) stand. J J Ecol 29:111–120

    Google Scholar 

  • Kim DY (1987) Seasonal estimates of nitrogen fixation by Alnus rubra and Ceanothus species in western Oregon forest ecosystems. Dissertation, Oregon State University

  • Kitao M, Lei TT, Koike T et al (2007) Interaction of drought and elevated CO2 on photosynthetic down-regulation and susceptibility to photoinhibition in Japanese white birch (Betula platyphylla var. japonica) seedlings grown under limited N availability. Tree Physiol 27(5):727–735

    Article  CAS  PubMed  Google Scholar 

  • Kogawara S, Norisada M, Tange T et al (2006) Elevated atmospheric CO2 concentration alters the effects of phosphate supply on growth of Japanese red pine (Pinus densiflora) seedlings. Tree Physiol 26:25–33

    Article  CAS  PubMed  Google Scholar 

  • Koike T, Izuta T, Lei TT et al (1997) Effects of high CO2 on nodule formation in roots of Japanese mountain alder seedlings grown under two nutrient levels. In: Ando T, Fujita K, Mae T, Matsumoto H, Mori S, Sekiya J (eds) Plant nutrition—for sustainable food production and environment. Kluwer Academic Publishers, Japan, pp 887–888

    Chapter  Google Scholar 

  • Koike T, Tobita H, Shibata T et al (2006) Defense characteristics of deciduous broad-leaved tree seedlings grown under factorial combination of two levels of CO2 and nutrients. Popul Ecol 48:23–29

    Article  Google Scholar 

  • Körner C, Asshoff R, Bignucolo O et al (2005) Carbon flux and growth in mature deciduous forest tree exposed to elevated CO2. Science 309:1360–1362

    Article  PubMed  CAS  Google Scholar 

  • Kostiainen K, Saranpaa P, Lundqvist SO et al (2014) Wood properties of Populus and Betula in long-term exposure to elevated CO2 and O3. Plant Cell Environ 37:1452–1463

    Article  CAS  PubMed  Google Scholar 

  • Kucho K, Hay AE, Normand P (2010) The determinants of the actinorhizal symbiosis. Microbes Environ 25:241–252D

    Article  PubMed  Google Scholar 

  • Lambers H, Chapin III FS, Pons T (2008) Plant physiological ecology, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Lee YY, Son Y (2005) Diurnal and seasonal patterns of nitrogen fixation in an Alnus hirsuta plantation of central Korea. J Plant Biol 48(3):332–337

    Article  CAS  Google Scholar 

  • Lee TD, Reich PB, Tjoelker MG (2003) Legume presence increases photosynthesis and N concentrations of co-occurring non-fixers but does not modulate their responsiveness to carbon dioxide enrichment. Oecologia 137:22–31

    Article  PubMed  Google Scholar 

  • Leisner CP, Ainsworth EA (2012) Quantifying the effects of ozone on plant reproductive growth and development. Global Change Biol 18:606–616

    Article  Google Scholar 

  • Leisner CP, Ming R, Ainsworth EA (2014) Distinct transcriptional profiles of ozone stress in soybean (Glycine max) flowers and pods. BMC Plant Biol 14:335–347

    PubMed  PubMed Central  Google Scholar 

  • Leuzinger S, Hättenschwiler S (2013) Beyond global change: lessons from 25 years of CO2 research. Oecologia 171:639–651

    Article  PubMed  Google Scholar 

  • Lindroth RL (2010) Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. J Chem Ecol 36:2–21

    Article  CAS  PubMed  Google Scholar 

  • Lindroth RL (2012) Atmospheric change, plant secondary metabolites, and ecological interactions. In: Iason GR, Dicke M, Hartley S (eds) The ecology of plant secondary metabolites: from genes to global processes. Cambridge University Press, Cambridge, pp 120–153

    Chapter  Google Scholar 

  • Lõhmus K, Kuusemets V, Ivask M et al (2002) Budgets of nitrogen fluxes in riparian gray alder forests. Archiv fur Hydrobiol 13:321–332

    Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Riding atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Morgan PB (2005) Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields. Phil Trans R Soc B 360:2011–2022

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Su B, Currie WS et al (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54(8):731–739

    Article  Google Scholar 

  • Mander Ü, Lõhmus K, Teiter S et al (2008) Gaseous nitrogen and carbon fluxes in riparian alder stands. Boreal Env Res 13:231–241

    CAS  Google Scholar 

  • Mander Ü, Maddison M, Soosaar K et al (2015) The impact of a pulsing groundwater table on greenhouse gas emissions in riparian grey alder stands. Environ Sci Pollut Res 22:2360–2371

    Article  CAS  Google Scholar 

  • Manning WJ, Godzik B (2004) Bioindicator plants for ambient ozone in central and Eastern Europe. Environ Pollut 130:33–39

    Article  CAS  PubMed  Google Scholar 

  • Manning WJ, Godzik B, Musselman RM (2002) Potential bioindicator plant species for ambient ozone in forested mountain areas of central Europe. Environ Pollut 119:283–290

    Article  CAS  PubMed  Google Scholar 

  • Markham JH, Chanway CP (1999) Does past contact reduce the degree of mutualism in the Alnus rubra-Frankia symbiosis? Can J Bot 77:434–441

    Google Scholar 

  • Matyssek R, Bytnerowicz A, Karlsson P-E et al (2007) Promoting the O3 flux concept for European forest trees. Environ Pollut 146:587–607

    Article  CAS  PubMed  Google Scholar 

  • Meehan TD, Lindroth RL (2007) Modeling nitrogen flux by larval insect herbivores from a temperate hardwood forest. Oecologia 153:833–843

    Article  PubMed  Google Scholar 

  • Millett J, Godbold D, Smith AR, Grant H (2012) N2 fixation and cycling in Alnus glutinosa, Betula pendula and Fagus sylvatica woodland exposed to free air CO2 enrichment. Oecologia 169:541–552

    Article  PubMed  Google Scholar 

  • Mills G, Buse A, Gimeno B et al (2007) A synthesis of AOT40-based response functions and critical level of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643

    Article  CAS  Google Scholar 

  • Moiroud A, Capellano A (1979) Etude de la dynamique de l’azote à haute altitude. I. Fixation d’azote (réductuion de l’acétylène) par Alnus viridis. Can J Bot 57:1979–1985

  • Morgan PB, Ainsworth EA, Long SP (2003) How does elevated ozone impact soybean? A meta-analysis of photosynthesis, growth and yield. Plant Cell Environ 26:1317–1328

    Article  CAS  Google Scholar 

  • Mortensen LM, Skre O (1990) Effects of low ozone concentrations on growth of Betula pubescens Ehrh., Betula verrucosa Ehrh. and Alnus incana (L.) Moench. New Phytol 115:165–170

    Article  CAS  Google Scholar 

  • Myrold DD, Huss-Danell K (2003) Alder and lupine enhance nitrogen cycling in a degraded forest soil in Northern Sweden. Plant Soil 254:47–56

    Article  CAS  Google Scholar 

  • Newton M, Hassen BAE, Zavitkovski J (1968) Role of red alder in western forest succession. In: Trappe JM, Franklin JF, Tarrant RF, Hansen GH (eds) Biology of alder. USFS Pacific Northwest Forest and Range Experiment Station, Portland, OR, pp 73–83

    Google Scholar 

  • Noh NJ, Son Y, Koo JW et al (2010) Comparison of nitrogen fixation for north- and south-facing Robinia pseudoacacia stands in central Korea. J Plant Biol 53:61–69

    Article  Google Scholar 

  • Norby RJ (1987) Nodulation and nitrogenase activity in nitrogen-fixing woody plants stimulated by CO2 enrichment of the atmosphere. Physiol Plant 71:77–82

    Article  CAS  Google Scholar 

  • Norby R, Zak DR (2011) Ecological lessons from free-air CO2 Enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42:181–203

    Article  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM et al (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. PNAS 107(45):19368–19373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nord EA, Lynch JP (2009) Plant phenology: a critical controller of soil resource acquisition. J Experiment Bot 60(7):1927–1937

    Article  CAS  Google Scholar 

  • Normand P (2013) A brief history of Frankia and actinorhizal plants meetings. J Bioscience 38:677–684

    Article  Google Scholar 

  • Pandey R, Zinta G, AbdElgawad H et al (2015) Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotech Advances 33:303–316

    Article  CAS  Google Scholar 

  • Pawlowski N, Newton WE (2008) Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht

    Book  Google Scholar 

  • Pawlowski N, Sprent JI (2008) Comparison between actinorhizal and legume symbiosis. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 261–288

    Chapter  Google Scholar 

  • Pezeshki SR, Hinckley TM (1988) The water relations characteristics of Alnus rubra and Populus trichocarpa: responses to field drought. Can J For Res 18:1159–1166

    Article  Google Scholar 

  • Pokharel A, Mirza BS, Dawson JO, Hahn D (2011) Frankia populations in soil and root nodules of sympatrically grown Alnus taxa. Microb Ecol 61:92–100

    Article  PubMed  Google Scholar 

  • Põlme S, Bahram M, Kõljalg U, Tedersoo L (2014) Global biogeography of Alnus-associated Frankia actinobacterial. New Phytol 204:979–988

    Article  PubMed  Google Scholar 

  • Poorter H, Navas ML (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198

    Article  Google Scholar 

  • Pourhassan N, Wichard T, Roy S, Bellenger JP (2015) Impact of elevated CO2 on metal homeostasis and the actinorhizal symbiosis in early successional alder shrubs. Environ Exp Bot 109:168–176

    Article  CAS  Google Scholar 

  • Reverchon F, Xu Z, Blumfield TJ et al (2012) Impact of global change and fire on the occurrence and function of understory legumes in forest ecosystems. J Soil Sediments 12:150–160

    Article  Google Scholar 

  • Rhoades C, Oskarsson H, Binkley D, Stottlemyer B (2001) Alder (Alnus crispa) effects on soils in ecosystems of the Agashashok River valley, northwest Alaska. Ecoscience 8:89–95

    Google Scholar 

  • Rogers A, Ainsworth EA, Leakey ADB (2009) Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol 131:1009–1016

    Article  CAS  Google Scholar 

  • Roggy JC, Moiroud A, Lensi R, Domenach AM (2004) Estimating N transfers between N2-fixing actinorhizal species and the non-N2-fixing Prunus avinm under partially controlled conditions. Biol Fertil Soils 39:312–319

    Article  Google Scholar 

  • Ruess RW, Anderson MD, Mitchell JS, McFarland JW (2006) Effects of defoliation on growth and N fixation in Alnus tenuifolia: consequences for changing disturbance regimes at high latitudes. Ecoscience 13:404–412

    Article  Google Scholar 

  • Ruess RW, Anderson MD, McFarland JM et al (2013) Ecosystem-level consequences of symbionts partnerships in an N-fixing shrub from interior Alaskan floodplains. Ecol Monog 83:177–194

    Article  Google Scholar 

  • Rytter L (1989) Distribution of roots and root nodules and biomass allocation in young intensively managed gray alder stands on a peat bog. Plant Soil 119:71–79

    Article  Google Scholar 

  • Rytter L, Arveby AS, Granhall U (1991) Dinitrogen (C2H2) fixation in relation to nitrogen fertilization of grey alder [Alnus incana (L.) Moench.] plantations in a peat bog. Biol Fertil Soils 10:233–240

    Article  CAS  Google Scholar 

  • Sanborn P, Preston C, Brockley R (2002) N2-fixation by Sitka alder in a young lodgepole pine stand in central interior British Columbia, Canada. For Ecol Manage 167: 223–231

    Article  Google Scholar 

  • Sardans J, Peñuelas J (2012) The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiol 160:1741–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schleppi P, Bucher-Wallin I, Hagedorn F, Körner C (2012) Increased nitrate availability in the soil of mixed mature temperate forest subjected to elevated CO2 concentration (canopy FACE). Global Change Biol 18:757–768

    Article  Google Scholar 

  • Schwintzer CR, Tjepkema JD (1997) Field nodules of Alnus incana ssp. rugosa and Myrica gale exhibit pronounced acetylene-induced declines in nitrogenase activity. Can J Bot 75:1415–1423

    Article  CAS  Google Scholar 

  • Scullion J, Smith AR, Gwynn-Jones D et al (2014) Deciduous woodland exposed to elevated atmospheric CO2 has species-specific impact on anecic earthworms. Appl Soil Ecol 80:84–92

    Article  Google Scholar 

  • Seeds JD, Bishop JG (2009) Low Frankia inoculation potentials in primary successional sites at Mount St. Helens, Washington, USA. Plant Soil 323:225–233

    Article  CAS  Google Scholar 

  • Seiler JR, Johnson JD (1984) Growth and acetylene reduction of black alder seedlings in response to water stress. Can J For Res 14:477–480

    Article  CAS  Google Scholar 

  • Sharma E, Ambasht RS (1984) Seasonal variation in nitrogen fixation by different ages of root nodules of Alnus nepalensis plantation, in the eastern Himalayas. J Appl Ecol 21:265–270

    Article  CAS  Google Scholar 

  • Sharma E, Ambasht RS (1986) Root nodule age-class transition, production and decomposition in an age sequence of Alnus nepalensis plantation stands in the eastern Himalayas. J Appl Ecol 23:689–701

    Article  Google Scholar 

  • Sharma E, Ambasht RS (1988) Nitrogen accretion and its energetics in the Himalayan alder. Funct Ecol 2:229–235

    Article  Google Scholar 

  • Sharma G, Sharma R, Sharma E, Singh KK (2002) Performance of age series of Alnus-cardamom plantation in the Sikkim Himalaya: nutrient dynamics. Ann Bot 89:273–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma G, Sharma R, Sharma E (2008) Influence of stand age on nutrient and energy release through decomposition in alder-cardamom agroforestry systems of the Eastern Himalayas. Ecol Res 23:99–106

    Article  Google Scholar 

  • Sharma G, Sharma R, Sharma E (2010) Impact of altitudinal gradients on energetics and efficiencies of N2-fixation in alder-cardamom agroforestry systems of the eastern Himalayas. Ecol Res 25:1–12

    Article  Google Scholar 

  • Sicher RC, Barnaby JY (2012) Impact of carbon dioxide enrichment on the responses of maize leaf transcripts and metabolites to water stress. Physiol Plant 144:238–253

    Article  CAS  PubMed  Google Scholar 

  • Sigurdsson BD, Medhurst JL, Wallin G et al (2013) Growth of mature boreal Norway spruce was not affected by elevated [CO2] and/or air temperature unless nutrient availability was improved. Tree Physiol 33:1192–1205

    Article  CAS  PubMed  Google Scholar 

  • Silvester WB, Winship LJ (1990) Transient responses of nitrogenase to acetylene and oxygen by actinorhizal nodules and cultured Frankia. Plant Physiol 91:480–486

    Article  Google Scholar 

  • Silvester WB, Berg RH, Schwintzer CR, Tjepkema JD (2008) Oxygen responses, hemoglobin, and the structure and function of vesicles. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing Actinorhizal symbioses. Springer, Dordrecht, pp 105–146

    Chapter  Google Scholar 

  • Simard SW, Radosevich SR, Sachs DL, Hagerman SM (2006) Evidence for competition and facilitation trade-offs: effects of Sitka alder density on pine regeneration and soil productivity. Can J For Res 36:1286–1298

    Article  Google Scholar 

  • Smith AR, Lukac M, Bambrick M et al (2013a) Tree species diversity interacts with elevated CO2 to induce a greater root system response. Global Change Biol 19:217–228

    Article  Google Scholar 

  • Smith AR, Lukac M, Hood R et al (2013b) Elevated CO2 enrichment induces a differential biomass response in a mixed species temperate forest plantation. New Phytol 198:156–168

    Article  CAS  PubMed  Google Scholar 

  • Son Y, Lee YY, Lee CY, Yi MJ (2007) Nitrogen fixation, soil nitrogen availability, and biomass in pure and mixed plantations of alder and pine in central Korea. J Plant Nutri 30:1841–1853

    Article  CAS  Google Scholar 

  • Stöcklin J, Körner CH (1999) Interactive effects of elevated CO2, P availability and legume presence on calcareous grassland: results of a glasshouse experiment. Funct Ecol 13:200–209

    Article  Google Scholar 

  • Tadaki Y, Mori H, Mori S (1987) Studies on the production structure of forests (XX) Primary productivity of a young alder stand. J J For Soc 69:207–214 (in Japanese)

    Google Scholar 

  • Takeda H (1998) Decomposition processes of litter along a latitudinal gradient. In: Sassa K (ed) Environmental forest science. Kuluwer, Dordrecht, pp 197–206

    Chapter  Google Scholar 

  • Tateno M (2003) Benefit to N2-fixing alder of extending growth period at the cost of leaf nitrogen loss without resorption. Oecologia 137:338–343

    Article  PubMed  Google Scholar 

  • Tateno R, Tokuchi N, Yamanaka N et al (2007) Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan’an on the Loess Plateau, China. For Ecol Manage 241:84–90

    Article  Google Scholar 

  • Temperton VM, Grayston SJ, Jackson G et al (2003a) Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment. Tree Physiol 23:1051–1059

    Article  CAS  PubMed  Google Scholar 

  • Temperton VM, Millard P, Jarvis PG (2003b) Does elevated atmospheric carbon dioxide affect internal nitrogen allocation in the temperate trees Alnus glutinosa and Pinus sylvestris. Global Change Biol 9:286–294

    Article  Google Scholar 

  • Thomas RB, Bashkin MA, Richter DD (2000) Nitrogen inhibition of nodulation and N2 fixation of a tropical N2-fixing tree (Gliricidia sepium) grown in elevated atmospheric CO2. New Phytol 145:233–243

    Article  CAS  Google Scholar 

  • Tissue DT, Megonigal JP, Thomas RB (1997) Nitrogenase activities and N2 fixation are stimulated by elevated CO2 in a tropical N2-fixing tree. Oecologia 109:28–33

    Article  Google Scholar 

  • Tjepkema JD, Schwintzer CR, Monz CA (1988) Time course of acetylene reduction in nodules of five actinorhizal genera. Plant Physiol 86:581–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobita H, Kitao M, Koike T, Maruyama Y (2005) Effects of elevated CO2 and nitrogen availability on nodulation of Alnus hirsuta Turcz. Phyton 45:125–131

    CAS  Google Scholar 

  • Tobita H, Uemura A, Kitao M et al (2008) The effects of elevated CO2, low phosphorus supply, and drought on photosynthetic activity of Alnus hirsuta (Turcz.). Trans Mtg Hokkaido Br Jpn For Soc 56:43–45 (in Japanese)

    Google Scholar 

  • Tobita H, Hasegawa SF, Tian X et al (2010a) Spatial distribution and biomass of root nodules in a naturally regenerated stand of Alnus hirsuta (Turcz,) var. sibirica. Symbiosis 50:77–86

    Article  Google Scholar 

  • Tobita H, Uemura A, Kitao M et al (2010b) Interactive effects of elevated CO2, phosphorus deficiency, and soil drought on nodulation and nitrogenase activity in Alnus hirsuta and Alnus maximowiczii. Symbiosis 50:59–69

    Article  CAS  Google Scholar 

  • Tobita H, Uemura A, Kitao M et al (2011) Effects of elevated [CO2] and soil nutrients and water conditions on photosynthetic and growth responses of Alnus hirsuta. Funct Plant Biol 38:702–710

    Article  CAS  Google Scholar 

  • Tobita H, Hasegawa SF, Yazaki K et al (2013a) Growth and N2 fixation in an Alnus hirsuta (Turcz.) var. sibirica stand in Japan. J Biosci 38(4):761–776

    Article  CAS  PubMed  Google Scholar 

  • Tobita H, Kucho K, Yamanaka T (2013b) Abiotic factors influencing nitrogen-fixing actinorhizal symbioses. In: Ricardo A (ed) Symbiotic endophytes. Springer, Berlin Heidelberg, pp 103–122

    Chapter  Google Scholar 

  • Tobita H, Nanami S, Hasegawa SF et al (2015) Spatial distribution of regenerated woody plants in Alnus hirsuta (Turcz.) var. sibirica stand in Japan. Open J For 5:210–220

    Google Scholar 

  • Tripp LN, Bezdicek DF, Heilman PE (1979) Seasonal and diurnal patterns and rates of nitrogen fixation by young red alder. Forest Sci 25: 371–380

    Google Scholar 

  • Tromas A, Diagne N, Diedhiou I et al (2013) Establishment of actinorhizal symbioses. In: Ricardo A (ed) Symbiotic Endophytes. Springer, Berlin Heidelberg, pp 89–101

    Chapter  Google Scholar 

  • Tsutsumi H, Nakatsubo T, Ino Y (1993) Field measurements of nitrogen-fixing activity of intact saplings of Alnus maximowiczii in the subalpine zone of Mt Fuji. Ecol Res 8:85–92

    Article  Google Scholar 

  • Uemura S, Sato T (1975) Non-leguminous root nodules in Japan (a supplementary report). In: Takahashi H (ed) Nitrogen fixation and nitrogen cycle. JIBP Synthesis. Univ of Tokyo Press, Tokyo, pp 17–24

    Google Scholar 

  • Uemura A, Tobita H, Kitaoka S, Utsugi H (2009) Effects of high CO2 concentration on water relations of two Alnus species. Trans Mtg Hokkaido Br Jpn For Soc 57:195–197 (in Japanese)

    Google Scholar 

  • Uliassi DD, Ruess RW (2002) Limitation to symbiotic nitrogen fixation in primary succession on the Tanana river floodplain. Ecology 83:88–103

    Article  Google Scholar 

  • Uliassi DD, Huss-Danell K, Ruess RW, Doran K (2000) Biomass allocation and nitrogenase activity in Alnus tenuifolia: responses to successional soil type and phosphorus availability. Ecoscience 7:73–79

    Google Scholar 

  • Urgiles N, Strauss A, Lojan P, Schussler A (2014) Cultured arbuscular mycorrhizal fungi and native soil inocula improve seedling development of two pioneer trees in the Andean region. New For 45:859–874

    Article  Google Scholar 

  • Uri V, Lõhmus K, Tullus H (2004) The budget of demand for nitrogen in grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land in Estonia. Balt For 10:12–18

    Google Scholar 

  • Uri V, Lõhmus K, Mander Ü et al (2011) Long-term effects on the nitrogen budget of a short-rotation grey alder (Alnus incana (L.) Moench) forest on abandoned agricultural land. Ecol Eng 37:920–930

    Article  Google Scholar 

  • Uri V, Aosaar J, Varik M et al (2014) The dynamics of biomass production, carbon and nitrogen accumulation in grey alder (Alnus incana (L.) Moench) chronosequence stands in Estonia. For Ecol Manage 327:106–117

    Article  Google Scholar 

  • Valdés M (2008) Frankia ecology. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 49–72

    Chapter  Google Scholar 

  • Valverde C, Ferrari A, Wall LG (2002) Phosphorous and the regulation of nodulation in the actinorhizal symbiosis between Discaria trinervis (Rhamnaceae) and Frankia BCU110501. New Phytol 153:43–52

    Article  CAS  Google Scholar 

  • VanderHeyden D, Skelly J, Innes J et al (2001) Ozone exposure thresholds and foliar injury on forest plants in Switzerland. Environ Pollut 111:321–331

    Article  CAS  PubMed  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • Vitousek PM, Walker LR (1987) Colonization, succession and resource availability: ecosystem-level interactions. In: Gray AJ, Crawley MJ, Edwards PJ (eds) Colonization, succession and stability. Blackwell Scientific, Oxford, pp 207–223

    Google Scholar 

  • Vitousek PM, Cassman K, Cleveland C et al (2002) Towards and ecological understanding of biological nitrogen fixation. Biogeochemistry 57:1–45

    Article  Google Scholar 

  • Vogel CS, Curtis PS (1995) Leaf gas exchange and nitrogen dynamics of N2-fixing, field-grown Alnus glutinosa under elevated atmospheric CO2. Global Change Biol 1:55–61

    Article  Google Scholar 

  • Vogel JG, Gower ST (1998) Carbon and nitrogen dynamics of boreal jack pine stands with and without a green alder understory. Ecosystems 1:386–400

    Article  CAS  Google Scholar 

  • Vogel CS, Curtis PS, Thomas RB (1997) Growth and nitrogen accretion of dinitrogen-fixing Alnus glutinosa (L.) Gaertn. under elevated carbon dioxide. Plant Ecol 130:63–70

    Article  Google Scholar 

  • Voigt GK, Steucek GL (1969) Nitrogen distribution and accretion in an alder ecosystem. Soil Sci Soc Am 33:946–949

    Article  CAS  Google Scholar 

  • Wall LG, Berry AM (2008) Early interactions, infection and nodulation in actinorhizal symbiosis. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, Dordrecht, pp 147–166

    Chapter  Google Scholar 

  • Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeoscience 7:2261–2282

    Article  CAS  Google Scholar 

  • Watanabe Y, Satomura T, Sasa K et al (2010) Differential anatomical responses to elevated CO2 in saplings of four hardwood species. Plant Cell Environ 33:1101–1111

    PubMed  Google Scholar 

  • Winship LJ, Tjepkema JD (1990) Techniques for measuring nitrogenase activity in Frankia and actinorhizal plants. In: Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic Press Inc, Tokyo, pp 264–280

    Google Scholar 

  • Wittig VE, Ainsworth EA, Naidu SL et al (2009) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biol 15:396–424

    Article  Google Scholar 

  • Wurtz TL (1995) Understory alder in three boreal forests of Alaska: local distribution and effects on soil fertility. Can J For Res 25:987–996

    Article  Google Scholar 

  • Xu Z, Shimizu H, Yagasaki Y et al (2013) Interactive effects of elevated CO2, drought, and warming on plants. J Plant Growth Regul 32:692–707

    Article  CAS  Google Scholar 

  • Yamanaka T, Li CY, Bormann BT, Okabe H (2003) Tripartite associations in an alder: effects of Frankia and Alpova diplophloeus on the growth, nitrogen fixation and mineral acquisition of Alnus tenuifolia. Plant Soil 254:179–186

    Article  CAS  Google Scholar 

  • Yoon TK, Noh NJ, Han S et al. (2014) Soil moisture effects on leaf litter decomposition and soil carbon dioxide efflux in wetland and upland forests. Soil Sci Soc Am J 78:1804–1816

    Article  CAS  Google Scholar 

  • Younger PD, Kapustka LA (1983) N2 (C2H2) ase activity by Alnus incana ssp. rugosa (Betulaceae) in the northern hardwood forest. Am J Bot 70:30–39

    Article  CAS  Google Scholar 

  • Zak DR, Pregitzer KS, Kubiske ME, Burton AJ (2011) Forest productivity under elevated CO2 and O3: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO2. Ecol Lett 14:1220–1226

    Article  PubMed  Google Scholar 

  • Zavitkovski J, Newton M (1968) Effect of organic matter and combined nitrogen on nodulation and nitrogen fixation in red alder. In: Trappe JM, Franklin JF, Tarrant RF, Hansen GH (eds) Biology of alder. USFS Pacific Northwest Forest and Range Experiment Station, Portland, OR, pp 209–223

    Google Scholar 

  • Zhang X, Sigman DM, Morel FMM, Kraepiel AML (2014) Nitrogen isotope fractionation by alternative nitrogenases and past ocean anoxia. PNAS 111:4782–4787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Koike for providing the opportunity to prepare this manuscript and for his valuable suggestions. This study was financially supported by JSPS KAKENHI Grant Numbers 91567 and 24580230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Tobita.

Ethics declarations

Conflict of interest

We have no conflict of interest.

Additional information

Communicated by T. Koike and K. Noguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobita, H., Yazaki, K., Harayama, H. et al. Responses of symbiotic N2 fixation in Alnus species to the projected elevated CO2 environment. Trees 30, 523–537 (2016). https://doi.org/10.1007/s00468-015-1297-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1297-x

Keywords

Navigation