Skip to main content
Log in

Growth and N2 fixation in an Alnus hirsuta (Turcz.) var. sibirica stand in Japan

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

To estimate the N2 fixation ability of the alder (Alnus hirsuta (Turcz.) var. sibirica), we examined the seasonal variation in nitrogenase activity of nodules using the acetylene reduction method in an 18-year-old stand naturally regenerated after disturbance by road construction in Japan. To evaluate the contribution of N2 fixation to the nitrogen (N) economy in this alder stand, we also measured the phenology of the alder, the litterfall, the decomposition rate of the leaf litter, and N accumulation in the soil. The acetylene reduction activity per unit nodule mass (ARA) under field conditions appeared after bud break, peaked the maximum in midsummer after full expansion of the leaves, and disappeared after all leaves had fallen. There was no consistent correlation between ARA and tree size (dbh). The amount of N2 fixed in this alder stand was estimated at 56.4 kg ha−1 year−1 when a theoretical molar ratio of 3 was used to convert the amount of reduced acetylene to the amount of fixed N2. This amount of N2 fixation corresponded to the 66.4% of N in the leaf litter produced in a year. These results suggested that N2 fixation still contributed to the large portion of N economy in this alder stand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aosaar J, Varik M, Lõhmus K, Ostonen I, Becker H and Uri V 2013 Long-term study of above- and below-grownd biomass production in relation to nitrogen and carbon accumulation dynamics in a grey alder (Alnus incana (L.) Moench) plantation on former agricultural land. Eur. J. Forest Res. doi:10.1007/s10342-013-0706-1

    Google Scholar 

  • Baker DD and Schwintzer CR 1990 Introduction; in The biology of Frankia and actinorhizal plants (eds) CR Schwintzer and JD Tjepkema (Tokyo: Academic Press) pp 1–13

    Google Scholar 

  • Brockley RP and Sanborn P 2003 Effects of sitka alder on the growth and foliar nutrition of young lodgepole pine in the central interior of British Columbia. Can. J. For. Res. 33 1761–1771

    Article  CAS  Google Scholar 

  • Brunner I and Godbold DL 2007 Tree roots in a changing world. J. For. Res. 12 78–82

    Article  Google Scholar 

  • Chapin FSIII 1980 The mineral nutrition of wild plants. Ann. Rev. Ecol. Syst. 11 233–260

    Google Scholar 

  • Cyr H and Pace ML 1993 Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361 148–150

    Article  Google Scholar 

  • Dawson JO 2008 Ecology of actinorhizal plants; in Nitrogen-fixing actinorhizal symbioses (eds) K Pawlowski and WE Newton (Dordrecht: Springer) pp 119–234

    Google Scholar 

  • Dawson JO and Funk DT 1981 Seasonal change in foliar nitrogen concentration of Alnus glutinosa. Forest. Sci. 27 239–243

    Google Scholar 

  • Eguchi N, Karatsu K, Ueda T, Funada R, Takagi K, Hiura T, Sasa K and Koike T 2008 Photosynthetic responses of birch and alder saplings grown in a free air CO2 enrichment system in northern Japan. Trees 22 437–447

    Article  CAS  Google Scholar 

  • Enoki T, Kawaguchi H and Iwatsubo G 1997 Nutrient-uptake and nutrient-use efficiency of Pinus thunbergii Parl. along a topographical gradient of soil nutrient availability. Ecol. Res. 12 191–199

    Article  CAS  Google Scholar 

  • Finer L, Ohashi M, Noguchi K and Hirano Y 2011 Factors causing variation in fine root biomass in forest ecosystems. For. Ecol. Manage. 261 265–277

    Article  Google Scholar 

  • Frost CJ and Hunter MD 2007 Recycling of nitrogen in herbivore feces: plant recovery, herbivore assimilation, soil retention, and leaching losses. Oecologia 151 42–53

    Article  PubMed  Google Scholar 

  • Gill R and Jackson RB 2000 Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147 13–31

    Article  Google Scholar 

  • Hardy RWF and Havelka UD 1975 Nitrogen Fixation Research: A key to world food? Science 188 633–643

    Article  PubMed  CAS  Google Scholar 

  • Hardy RWF, Holsten RD, Javkson EK and Burns RC 1968 The acetylene - ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol. 43 1185–1207

    Article  PubMed  CAS  Google Scholar 

  • Hardy RWF, Burns RC and Holsten RD1973 Application of the acetylene-ethylene assay for the measurement of nitrogen fixation. Soil. Biol. Biochem. 5 47–81

  • Hasegawa S and Takeda H 2001 Functional specialization of current shoots as a reproductive strategy in Japanese alder (Alnus hirsuta var. sibirica). Can. J. Bot. 79 38–48

    Google Scholar 

  • Hawkins BJ and MacDonald S 1994 The influences of temperature and soil water on growth, photosynthesis, and nitrogen fixation of red alder (Alnus rubra) seedlings. Can. J. For. Res. 24 1029–1032

    Article  Google Scholar 

  • Hibbs DE and Cromack CJr 1990 Actinorhizal plants in pacific northwest forests; in The biology of Frankia and actinorhizal plants (eds) CR Schwintzer and JD Tjepkema (Tokyo: Academic Press) pp 343–363

  • Hungate BA, Dukes JT, Shaw MR, Luo Y and Field CB 2003 Nitrogen and climate change. Science 302 1512–1513

  • Hurd TM and Schwintzer CR 1996 Formation of cluster roots in Alnus incana ssp. rugosa and other Alnus species. Can. J. Bot. 74 1684–1686

  • Hurd TM, Raynal DJ and Schwintzer CR 2001 Symbiotic N2 fixation of Alnus incana ssp. rugosa in shrub wetlands of the Adirondack Mountains, New York, USA. Oecologia 126 94–103

    Article  Google Scholar 

  • Huss-Danell K 1978 Nitrogenase activity measurements in intact plants of Alnus incana. Physiol. Plant. 43 372–376

    Article  CAS  Google Scholar 

  • Huss-Danell K 1990 The physiology of actinorhizal nodules; in The biology of Frankia and actinorhizal plants (eds) CR Schwintzer and JD Tjepkema (Tokyo: Academic Press) pp 129–156

    Google Scholar 

  • Huss-Danell K 1997 Actinorhizal symbioses and their N2 fixation. New Phytol. 136 375–405

    Article  CAS  Google Scholar 

  • Huss-Danell K and Sellstedt A 1983 Nitrogenase activity in response to restricted shoot growth in Alnus incana. Can. J. Bot. 61 2949–2955

    Article  CAS  Google Scholar 

  • Huss-Danell K, Lundquist PO and Ohlsson H 1992 N2 fixation in a young Alnus incana stand, based on seasonal and diurnal variation in whole plant nitrogenase activity. Can. J. Bot. 70 1537–1544

    Google Scholar 

  • Kikuzawa K 1978 Emergence, defoliation and longevity of alder (Alnus hirsuta Turcz.) leaves in a deciduous hardwood forest stand. Jpn. J. Ecol. 28 299–306

    Google Scholar 

  • Kikuzawa K, Asai T and Higashiura Y 1979 Leaf production and the effect of defoliation by the larval population of the winter moth, operophtera brumata L. in an alder (Alnus inokumae MURAI et KUSAKA) stand. J. J. Ecol. 29 111–120

    Google Scholar 

  • Komiyama A, Nakagawa M and Kato S 2011 Common allometric relationships for estimating tree biomasses in cool temperate forests of Japan. J. Jpn. For. Soc. 93 220–225

    Article  Google Scholar 

  • Kramer PJ and Kozlowski TT 1979 Physiology of woody plants (New York: Academic Press) pp 811

    Google Scholar 

  • Layzell DB, Weagle GE and Canvin DT 1984 A highly sensitive flow through H2 gas analyzer for use in N2 fixation studies. Plant Physiol. 75 582–585

    Article  PubMed  CAS  Google Scholar 

  • Lee YY and Son Y 2005 Diurnal and seasonal patterns of nitrogen fixation in an Alnus hirsuta plantation of central Korea. J. Plant Biol. 48 332–337

    Article  CAS  Google Scholar 

  • Meehan TD and Lindroth RL 2007 Modeling nitrogen flux by larval insect herbivores from a temperate hardwood forest. Oecologia 153 833–843

    Article  PubMed  Google Scholar 

  • Minchin FR, Sheehy JE and Witty JF 1986 Further errors in acetylene reduction assay: Effects of plant disturbance. J. Exp. Bot. 37 1581–1591

    Google Scholar 

  • Myrold DD and Huss-Danell K 2003 Alder and lupine enhance nitrogen cycling in a degraded forest soil in Northern Sweden. Plant Soil 254 47–56

    Article  CAS  Google Scholar 

  • Newton M, El-Hassen BA and Zavitkovski J 1968 Role of red alder in western forest succession; in Biology of alder (eds) JM Trappe, JF Franklin, RF Tarrant and GM Hansen (Portland, Oregon: Pacific Northwest Forest and Range Experiment Station, U.S. Dept. of Agriculture) pp 73–83

    Google Scholar 

  • Olson JS 1963 Energy storage and the balance of producers and decomposition in ecological systems. Ecology 44 322–331

    Article  Google Scholar 

  • Osono T and Takeda H 2004 Accumulation and release of nitrogen and phosphorus in relation to lignin decomposition in leaf litter of 14 tree species. Ecol. Res. 19 593–602

    Article  Google Scholar 

  • Pawlowski N and Newton WE 2008 Nitrogen-fixing actinorhizal symbioses (Dordrecht: Springer) pp. 310

    Book  Google Scholar 

  • Pizelle G 1984 Seasonal variations of the sexual reproductive growth and nitrogenase activity (C2H2) in mature Alnus glutinosa. Plant Soil 78 181–188

    Article  CAS  Google Scholar 

  • R Development Core Team 2008 R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ( http://www.R-project.org )

  • Sanboen P, Preston C and Brockley R 2002 N2-fixation by Sitka alder in a young lodgepole pine stand in central interior British Columbia, Canada. For. Ecol. Manage. 167 223–231

    Article  Google Scholar 

  • Schwintzer CR and Tjepkema JD 1994 Factors affecting the acetylene to 15N2 conversion ratio in root nodules of Myrica gale L. Plant Physiol. 106 1041–1047

    PubMed  Google Scholar 

  • Schwintzer CR and Tjepkema JD 1997 Field nodules of Alnus incana ssp. rugosa and Myrica gale ehibit pronounced acetylene- induced declines in nitrogenase activity. Can. J. Bot. 75 1415–1423

  • Schwintzer CR, Berry AM and Disney LD 1982 Seasonal patterns of root nodule growth, endophyte morphology, nitrogenase activity, and shoot development in Myrica gale. Can. J. Bot. 60 746–757

    Article  Google Scholar 

  • Sharma E 1993 Nutrient dynamics in Himalayan alder plantation. Ann. Bot. 72 329–336

    Article  CAS  Google Scholar 

  • Sharma E and Ambasht RS 1984 Seasonal variation in nitrogen fixation by different ages of root nodules of Alnus nepalensis plantation, in the eastern Himalayas. J. Appl. Ecol. 21 265–270

    Article  CAS  Google Scholar 

  • Sharma E and Ambasht RS 1988 Nitrogen accretion and its energetics in the Himalayan alder. Funct. Ecol. 2 229–235

    Article  Google Scholar 

  • Sharma G, Sharma R, Sharma E and Singh KK 2002 Performance of age series of Alnus-cardamom plantation in the Sikkim Himalaya: nutrient dynamics. Ann. Bot. 89 273–282

    Article  PubMed  CAS  Google Scholar 

  • Sharma G, Sharma R and Sharma E 2008 Influence of stand age on nutrient and energy release through decomposition in alder-cardamom agroforestry systems of the Eastern Himalayas. Ecol. Res. 23 99–106

    Article  Google Scholar 

  • Sharma G, Sharma R and Sharma E 2010 Impact of altitudinal gradients on energetics and efficiencies of N2-fixation in alder-cardamom agroforestry systems of the eastern Himalayas. Ecol. Res. 25 1–12

    Article  Google Scholar 

  • Silvester WB, Berg RH, Schwintzer CR and Tjepkema JD 2008 Oxygen responses, hemoglobin, and the structure and function of vesicles; in Nitrogen-fixing actinorhizal symbioses (eds) K Pawlowski and WE Newton (Dordrecht: Springer) pp 105–146

    Chapter  Google Scholar 

  • Son Y, Lee YY, Lee CY and Yi MJ 2007 Nitrogen fixation, soil nitrogen availability, and biomass in pure and mixed plantations of alder and pine in central Korea. J. Plant Nutri. 30 1841–1853

    Article  CAS  Google Scholar 

  • Tadaki Y, Mori H and Mori S 1987 Studies on the production structure of forests (XX) Primary productivity of a young alder stand. J. J. For. Soc. 69 207–214

    Google Scholar 

  • Takeda H 1998 Decomposition processes of litter along a latitudinal gradient; in Environmental forest science (ed) K Sassa (Dordrecht : Kuluwer) pp 197–206

    Chapter  Google Scholar 

  • Tateno M 2003 Benefit to N2-fixing alder of extending growth period at the cost of leaf nitrogen loss without resorption. Oecologia 137 338–343

    Article  PubMed  Google Scholar 

  • Tateno R, Tokuchi N, Yamanaka N, Du S, Otsuki K, Shimamura T, Xue Z, Wang S and Hou Q 2007 Comparison of litterfall production and leaf litter decomposition between an exotic black locust plantation and an indigenous oak forest near Yan'an on the Loess Plateau, China. For. Ecol. Manage. 241 84–90

  • Taylor BR, Parsons WFJ and Parkinson D 1989 Decomposition of Pupulius tremuloides leaf litter accelarated by addition of Alnus crispa litter. Can. J. For. Res. 19 674–679

    Article  Google Scholar 

  • Tjepkema JD, Schwintzer CR and Monz CA 1988 Time cource of acetylene reduction in nodules of five actinorhizal plants. Plant Physiol. 86 581–583

    Article  PubMed  CAS  Google Scholar 

  • Tobita H, Kitao M, Koike T and Maruyama Y 2005 Effects of elevated CO2 and nitrogen availability on nodulation of Alnus hirsuta Turcz. Phyton 45 125–131

    CAS  Google Scholar 

  • Tobita H, Hasegawa FS, Tian X, Nanami S and Takeda H 2010 Spatial distribution and biomass of root nodules in a naturally regenerated stand of Alnus hirsuta (Turcz.) var. sibirica. Symbiosis 50 59–69

    Article  CAS  Google Scholar 

  • Tobita H, Uemura A, Kitao M, Kiaoka S, Maruyama Y and Utsugi H 2011 Effects of elevated atmospheric carbon dioxide, soil nutrients and water conditions on photosynthetic and growth responses of Alnus hirsuta. Funct. Plant Ecol. 38 702–710

    CAS  Google Scholar 

  • Tsutsumi H, NakatsuboT and Ino Y 1993 Field measurements of nitrogen-fixing activity of intact saplings of Alnus maximowiczii in the subalpine zone of Mt Fuji. Ecol. Res. 8 85–92

  • Tsutsumi T 1989 Forest ecology (Tokyo: Asakura Publisher) pp 166 (in Japanese)

    Google Scholar 

  • Uemura S and Sato T 1975 Nitrogen fixation and nitrogen cycle; in JIBP Synthesis. Volume 12.(Univ. of Tokyo Press) p 17

  • Uliassi DD and Ruess RW 2002 Limitation to symbiotic nitrogen fixation in primary succession on the Tanana river floodplain. Ecology 83 88–103

    Article  Google Scholar 

  • Valverde C and Wall LG 2003 The regulation of nodulation, nitrogen fixation and assimilation under a carbohydrate shortage stress in the Discaria trinervis-Frankia symbiosis. Plant Soil 254 155–165

    Article  CAS  Google Scholar 

  • Van Cleve K, Viereck LA and Schlentner RL 1971 Accumulation of nitrogen in alder (Alnus) ecosystems near Fairbanks, Alaska. xxz Arct. Alp. Res. 3 101–114

    Google Scholar 

  • Van Cleve K, Chapin FS III, Dyrness CT and Viereck LA 1991 Element cycling in Taiga forest: state-factor control. BioScience 41 78–88

    Article  Google Scholar 

  • Van Cleve K, Yarie J, Erickson R and Dyrness CT 1993 Nitrogen mineralization and nitrification in successional ecosystems on the Tanana River floodplain, interior Alaska. Can. J. For. Res. 23 970–978

    Article  Google Scholar 

  • Vitousek PM 1982 Nutrient cycling and nutrient use efficiency. Am. Nat. 4 553–572

    Article  Google Scholar 

  • Vitousek PM and Walker LR 1987 Colonization, succession and resource availability: ecosystem-level interactions; in Colonization, succession and stability (eds) AJ Gray, MJ Crawley and PJ Edwards (Oxford, UK: Blackwell Scientific) pp 207–223

    Google Scholar 

  • Vitousek PM and Walker LR 1989 Biological invasion by Myrica faya in Hawai'i: plant demography, nitrogen fixation, ecosystem effects. Ecol. Mon. 59 247–265

    Article  Google Scholar 

  • Vogel JG and Gower ST 1998 Carbon and nitrogen dynamics of boreal jack pine stands with and without a green alder understory. Ecosystems 1 386–400

    Article  CAS  Google Scholar 

  • Wall LG and Berry AM 2008 Early interaction, infection and nodulation in actinorhizal symbiosis; in Nitrogen-fixing actinorhizal symbioses (eds) K Pawlowski and WE Newton (Dordrecht: Springer) pp 147–166

    Chapter  Google Scholar 

  • Wheeler CT 1971 The causation of the diurnal changes in nitrogen fixation in the nodules of Alnus glutinosa. New Phytol. 70 487–495

    Article  Google Scholar 

  • Wheeler CT, Cameron EM and Gordon JC 1978 Effects of handling and surgical treatments on nitrogenase activity in root nodules of Alnus glutinosa, with special reference to the application of indole-acetic acid. New Phytol. 80 175–178

    Article  CAS  Google Scholar 

  • Winship LJ and Tjepkema JD 1990 Techniques for measuring nitrogenase activity in Frankia and actinorhizal plants;in The biology of Frankia and actinorhizal plants (eds) CR Schwintzer and JD Tjepkema (Tokyo : Academic Press) pp 264–280

    Google Scholar 

  • Yamanaka T, Akama A, Li C-Y and Okabe H 2005 Growth, nitrogen fixation and mineral acquisition of Alnus sieboldiana after inoculation of Frankia together with Gigaspora margarita and Pseudomonas putida. J. For. Res. 10 21–26

  • Zavitkovski J and Newton M 1968 Effect of organic matter and combined nitrogen on nodulation and nitrogen fixation in red alder, in Biology of alder (eds) JM Trappe, JF Franklin, RF Tarrant and GM Hansen (Portland, Oregon: Pacific Northwest Forest and Range Experiment Station, U.S. Dept. of Agriculture) pp 209–224

    Google Scholar 

Download references

Acknowledgements

We thank Drs Iwatsubo, Takeda, Kawaguchi, Osawa, Tokuchi, Kitayama and the members of the Laboratory of Forest Ecology, Kyoto University, for their valuable suggestions. We are also grateful to Dr Ando, Messrs Kurumado and Saito for their pleasant acceptance and offer of study site and experimental office, and to Dr Nishimura, who gave us helpful suggestions on analysis, and Dr Tian for their help with the field work. This study was financially supported by JSPS KAKENHI Grant Numbers 91567, 24580230.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Tobita.

Additional information

[Tobita H, Hasegawa SF, Yazaki K, Komatsu M and Kitao M 2013 Growth and N2 fixation in an Alnus hirsuta (Turcz.) var. sibirica stand in Japan. J. Biosci. 38 1–16] DOI 10.1007/s12038-013-9369-9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobita, H., Hasegawa, S.F., Yazaki, K. et al. Growth and N2 fixation in an Alnus hirsuta (Turcz.) var. sibirica stand in Japan. J Biosci 38, 761–776 (2013). https://doi.org/10.1007/s12038-013-9369-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9369-9

Keywords

Navigation