Skip to main content

Advertisement

Log in

Frankia Populations in Soil and Root Nodules of Sympatrically Grown Alnus Taxa

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The genetic diversity of Frankia populations in soil and in root nodules of sympatrically grown Alnus taxa was evaluated by rep-polymerase chain reaction (PCR) and nifH gene sequence analyses. Rep-PCR analyses of uncultured Frankia populations in root nodules of 12 Alnus taxa (n = 10 nodules each) growing sympatrically in the Morton Arboretum near Chicago revealed identical patterns for nodules from each Alnus taxon, including replicate trees of the same host taxon, and low diversity overall with only three profiles retrieved. One profile was retrieved from all nodules of nine taxa (Alnus incana subsp. incana, Alnus japonica, Alnus glutinosa, Alnus incana subsp. tenuifolia, Alnus incana subsp. rugosa, Alnus rhombifolia, Alnus mandshurica, Alnus maritima, and Alnus serrulata), the second was found in all nodules of two plant taxa (A. incana subsp. hirsuta and A. glutinosa var. pyramidalis), and the third was unique for all Frankia populations in nodules of A. incana subsp. rugosa var. americana. Comparative sequence analyses of nifH gene fragments in nodules representing these three profiles assigned these frankiae to different subgroups within the Alnus host infection group. None of these sequences, however, represented frankiae detectable in soil as determined by sequence analysis of 73 clones from a Frankia-specific nifH gene clone library. Additional analyses of nodule populations from selected alders growing on different soils demonstrated the presence of different Frankia populations in nodules for each soil, with populations showing identical sequences in nodules from the same soil, but differences between plant taxa. These results suggest that soil environmental conditions and host plant genotype both have a role in the selection of Frankia strains by a host plant for root nodule formation, and that this selection is not merely a function of the abundance of a Frankia strain in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Schwintzer CR, Tjepkema JD (1990) The biology of Frankia and actinorhizal plants. Academic Press, San Diego

    Google Scholar 

  2. Huss-Danell K (1997) Actinorhizal symbioses and their N-2 fixation. New Phytol 136:375–405

    Article  CAS  Google Scholar 

  3. Benson DR, Silvester WB (1993) Biology of Frankia strains, actinomycete symbionts of actinorhizal plants. Microbiol Rev 57:293–319

    CAS  PubMed  Google Scholar 

  4. Baker DD (1987) Relationships among pure cultured strains of Frankia based on host specificity. Physiol Plant 70:245–248

    Article  Google Scholar 

  5. Benson DR, Dawson J (2007) Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130:318–330

    Article  CAS  Google Scholar 

  6. Dobritsa SV (1998) Grouping of Frankia strains on the basis of susceptibility to antibiotics, pigment production and host specificity. Int J Syst Bacteriol 48:1265–1275

    Article  CAS  Google Scholar 

  7. Dobritsa SV, Novik SN, Stupar OS (1990) Infectivity and host specificity of strains of Frankia. Microbiol (N Y) 59:210–214

    Google Scholar 

  8. Huang JB, Zhao ZY, Chen GX, Liu HC (1985) Host range of Frankia endophytes. Plant Soil 87:61–65

    Article  Google Scholar 

  9. Huss-Danell K, Myrold DD (1994) Intragenic variation in nodulation of Alnus: consequences for quantifying Frankia nodulation units in soil. Soil Biol Biochem 26:525–531

    Article  Google Scholar 

  10. Maunuksela L, Hahn D, Haahtela K (2000) Effect of freezing of soils on nodulation capacities of total and specific Frankia populations. Symbiosis (Rehovot) 29:107–120

    Google Scholar 

  11. Mirza BS, Welsh A, Rasul G, Rieder JP, Paschke MW, Hahn D (2009) Diversity of Frankia populations in root nodules of different host plant species revealed by nifH gene sequence analysis. Microb Ecol 58:384–393

    Article  PubMed  Google Scholar 

  12. Mirza BS, Welsh AK, Rieder JP, Paschke MW, Hahn D (2009) Diversity of frankiae in soils from five continents. Syst Appl Microbiol 32:558–570

    Article  CAS  PubMed  Google Scholar 

  13. Chandler DP, Fredrickson JK, Brockman FJ (1997) Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries. Mol Ecol 6:475–482

    Article  CAS  PubMed  Google Scholar 

  14. Versalovic J, de Bruijn FJ, Lupski JR (1998) Repetitive sequence-based PCR (rep-PCR) DNA fingerprinting of bacterial genomes. In: de Bruijn FJ, Lupski JR, Weinstock GM (eds) Bacterial genomes: physical structure and analysis. Chapman and Hall, New York, pp 437–454

    Google Scholar 

  15. Dombek PE, Johnson LK, Zimmerley ST, Sadowsky MJ (2000) Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Appl Environ Microbiol 66:2572–2577

    Article  CAS  PubMed  Google Scholar 

  16. Rademaker JLW, de Bruijn FJ (1997) Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer-assisted pattern analysis. In: Caetano-Anollés G, Gresshoff PM (eds) DNA markers: protocols, applications, and overviews. J. Wiley and Sons, New York, pp 151–171

    Google Scholar 

  17. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  18. Kukanskis KA, Siddiquee Z, Shohet RV, Garner HR (1999) Mix of sequencing technologies for sequence closure: an example. Biotechniques 28:630–634

    Google Scholar 

  19. Widmer F, Shaffer BT, Porteous LA, Seidler RJ (1999) Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon Cascade Mountain Range. Appl Environ Microbiol 65:374–380

    CAS  PubMed  Google Scholar 

  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  21. Maddison WP, Maddison DR (1999) MacClade: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland

    Google Scholar 

  22. Welsh A, Mirza BS, Rieder JP, Paschke MW, Hahn D (2009) Diversity of frankiae in root nodules of Morella pensylvanica grown in soils from five continents. Syst Appl Microbiol 32:201–210

    Article  PubMed  Google Scholar 

  23. Dai Y, He XH, Zhang C, Zhang Z (2004) Characterization of genetic diversity of Frankia strains in nodules of Alnus nepalensis (D. Don) from the Hengduan Mountains on the basis of PCR-RFLP analysis of the nifD-nifK IGS. Plant Soil 267:207–212

    Article  CAS  Google Scholar 

  24. Welsh AK, Dawson JO, Gottfried GJ, Hahn D (2009) Diversity of Frankia in root nodules of geographically isolated Arizona alders in central Arizona (USA). Appl Environ Microbiol 75:6913–6918

    Article  CAS  PubMed  Google Scholar 

  25. Oakley B, North M, Franklin JF, Hedlund BP, Staley JT (2004) Diversity and distribution of Frankia strains symbiotic with Ceanothus in California. Appl Environ Microbiol 70:6444–6452

    Article  CAS  PubMed  Google Scholar 

  26. Akimov VN, Dobritsa SV (1992) Grouping of Frankia strains on the basis of DNA relatedness. Syst Appl Microbiol 15:372–379

    CAS  Google Scholar 

  27. Bloom RA, Mullin BC, Tate RL (1989) DNA restriction patterns and DNA–DNA solution hybridization studies of Frankia isolates from Myrica pensylvanica (Bayberry). Appl Environ Microbiol 55:2155–2160

    CAS  PubMed  Google Scholar 

  28. Fernandez MP, Meugnier H, Grimont PAD, Bardin R (1989) Deoxyribonucleic acid relatedness among members of the genus Frankia. Int J Syst Bacteriol 39:424–429

    Article  Google Scholar 

  29. An CS, Riggsby WS, Mullin BC (1985) Relationships of Frankia isolates based on deoxyribonucleic acid homology studies. Int J Syst Bacteriol 35:140–146

    Article  CAS  Google Scholar 

  30. Shi Y, Ruan J (1992) DNA base composition and homology values in the classification of some Frankia strains. Acta Microbiologica Sinica 32:133–136

    Google Scholar 

  31. Lumini E, Bosco M, Fernandez MP (1996) PCR-RFLP and total DNA homology revealed three related genomic species among broad host-range Frankia strains. FEMS Microbiol Ecol 21:303–311

    Article  CAS  Google Scholar 

  32. Mirza BS, Welsh A, Hahn D (2007) Saprophytic growth of inoculated Frankia sp. in soil microcosms. FEMS Microbiol Ecol 62:280–289

    Article  CAS  PubMed  Google Scholar 

  33. Mirza BS, Welsh AK, Hahn D (2009) Growth of Frankia strains in leaf litter-amended soil and the rhizosphere of a non-actinorhizal plant. FEMS Microbiol Ecol 70:132–141

    Article  CAS  PubMed  Google Scholar 

  34. Timke M, Wang-Lieu NQ, Altendorf K-H, Lipski A (2005) Community structure and diversity of biofilms from a beer bottling plant as revealed using 16S rRNA gene clone libraries. Appl Environ Microbiol 71:6446–6452

    Article  CAS  PubMed  Google Scholar 

  35. Cottrell MT, Kirchman DL (2000) Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl Environ Microbiol 66:5116–5122

    Article  CAS  PubMed  Google Scholar 

  36. Cary SC, Cottrell MT, Stein JL, Camacho F, Desbruyeres D (1997) Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana. Appl Environ Microbiol 63:1124–1130

    CAS  PubMed  Google Scholar 

  37. Tonolla M, Peduzzi S, Demarta A, Peduzzi R, Hahn D (2004) Phototropic sulfur and sulfate-reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland. J Limnol 63:157–166

    Google Scholar 

  38. Schramm A, de Beer D, Wagner M, Amann R (1998) Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl Environ Microbiol 64:3480–3485

    CAS  PubMed  Google Scholar 

  39. Crannell WK, Tanaka Y, Myrold DD (1994) Calcium and pH interaction on root nodulation of nursery-grown red alder (Alnus rubra Bong.) seedlings by Frankia. Soil Biol Biochem 26:607–614

    Article  CAS  Google Scholar 

  40. Griffiths AP, McCormick LH (1984) Effects of soil acidity on nodulation of Alnus glutinosa and viability of Frankia. Plant Soil 79:429–434

    Article  CAS  Google Scholar 

  41. Jaman S, Fernandez MP, Moiroud A (1992) Genetic diversity of Elaeagnaceae—infective Frankia strains isolated from various soils. Acta Œcologica 13:395–405

    Google Scholar 

  42. Nickel A, Hahn D, Zepp K, Zeyer J (1999) In situ analysis of introduced Frankia populations in root nodules of Alnus glutinosa grown under different water availability. Can J Bot 77:1231–1238

    Article  Google Scholar 

  43. Nickel A, Pelz O, Hahn D, Saurer M, Siegwolf R, Zeyer J (2001) Effect of inoculation and leaf litter amendment on establishment of nodule-forming Frankia populations in soil. Appl Environ Microbiol 67:2603–2609

    Article  CAS  PubMed  Google Scholar 

  44. Huguet V, Batzli JM, Zimpfer JF, Normand P, Dawson JO, Fernandez MP (2001) Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polymorphism. Appl Environ Microbiol 67:2116–2122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Pamela Frederick for obtaining nodule samples and the Morton Arboretum for permission to collect plant and soil materials for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dittmar Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokharel, A., Mirza, B.S., Dawson, J.O. et al. Frankia Populations in Soil and Root Nodules of Sympatrically Grown Alnus Taxa. Microb Ecol 61, 92–100 (2011). https://doi.org/10.1007/s00248-010-9726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9726-2

Keywords

Navigation