Skip to main content
Log in

A brief history of Frankia and actinorhizal plants meetings

  • Commentary
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akkermans ADL, Baker DD, Huss-Danell K and Tjepkema JD 1984 Preface. Plant Soil 78 ix–x

    Article  Google Scholar 

  • Akkermans ADL and Hirsch AM 1997 A reconsideration of terminology in Frankia research: a need for congruence. Physiol. Plant. 99 574–578

    Article  CAS  Google Scholar 

  • Alloisio N, Félix S, Maréchal J, Pujic P, Rouy Z, Vallenet D, Medigue C and Normand P 2007 Frankia alni proteome under nitrogen-fixing and nitrogen-replete conditions. Physiol. Plant. 13 440–453

    Article  Google Scholar 

  • An C, Riggsby W and Mullin B 1985 Restriction pattern analysis of genomic DNA of Frankia isolates. Plant Soil 87 43–48

    Article  CAS  Google Scholar 

  • Aronson D and Boyer G 1994 Growth and siderophore formation in six iron limited strains of Frankia. Soil Biol. Biochem. 26 561–567

    Article  CAS  Google Scholar 

  • Baker D 1987 Relationships among pure-cultured strains of Frankia based on host specificity. Physiol. Plant. 70 245–248

    Article  Google Scholar 

  • Baker D, Kidd G and Torrey JG 1979 Separation of actinomycete nodule endophytes from crushed nodule suspensions by Sephadex fractionation. Bot. Gaz. 140S S49–S51

    Google Scholar 

  • Baker D and Torrey J 1979 The isolation and cultivation of actinomycetous root nodule endophytes; in Symbiotic nitrogen fixation in the management of temperate forests (eds) JC Gordon, CT Wheeler, DA Perry and OR Corvallis (Oregon State University: Forest Research Laboratory) pp 38–56

  • Baker DD and Berry A 1994 A tribute to John G. TORREY 1921–1993. Soil Biol. Biochem. 26 vii–viii

    Article  Google Scholar 

  • Beijerinck MW 1888 Die Bacterien der Papilionaceen-Knöllchen. Bot. Zeitung 46 725–735

    Google Scholar 

  • Benoit LF and Berry AM 1997 Flavonoid-like compounds from seeds of red alder (Alnus rubra) influence host nodulation by Frankia (Actinomycetales). Physiol. Plant. 99 588–593

    Article  CAS  Google Scholar 

  • Benson D and Eveleigh D 1979 Ultrastructure of the nitrogen-fixing symbiont of Myrica pensylvanica L. (bayberry) root nodules. Bot. Gaz. 140S S15–S21

    Google Scholar 

  • Benson DR and Winship LJ 1989 Preface. Plant Soil 181 viii–ix

    Google Scholar 

  • Berg RH 1999a Cytoplasmic bridge formation in the nodule apex of actinorhizal root nodules. Can. J. Bot. 77 1351–1357

    Google Scholar 

  • Berg RH 1999b Frankia forms infection threads. Can. J. Bot. 77 1327–1333

    Google Scholar 

  • Berg RH, Langenstein B and Silvester WB 1999 Development in the Datisca-Coriaria nodule type. Can. J. Bot. 77 1334–1350

    Google Scholar 

  • Berry AM, Harriott OT, Moreau RA, Osman SF, Benson DR and Jones AD 1993 Hopanoid lipids compose the Frankia vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc. Nat. Acad. Sci. USA 90 6091–6094

    Article  PubMed  CAS  Google Scholar 

  • Berry AM, Mendoza-Herrera A, Guo Y-Y, Hayashi J, Persson T, Barabote RD, Demchenko K, Zhang S and Pawlowski K 2011 New perspectives on nodule nitrogen assimilation in actinorhizal symbioses. Funct. Plant Biol. 38 645–652

    Article  CAS  Google Scholar 

  • Berry AM and Myrold DD 1997 Proceedings of the tenth international conference on Frankia and actinorhizal plants. Physiol. Plant. 99 564

    Article  Google Scholar 

  • Brunchorst J 1886 Uber einige Wurzelanschwellungen, besonders die jenigen von Alnus, und den Elaeagnaceen. Unters. bot. Inst. Tubingen 2 151–177

    Google Scholar 

  • Callaham D, Del Tredici P and Torrey J 1978 Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199 899–902

    Google Scholar 

  • Chaia EE and Myrold DD 2010 Variation of 15N natural abundance in leaves and nodules of actinorhizal shrubs in Northwest Patagonia. Symbiosis 50 97–105

    Article  CAS  Google Scholar 

  • Chatarpaul L, Chakravarty P and Subramaniam P 1989 Studies in tetrapartite symbioses. I. Role of ecto- and endomycorrhizal fungi and Frankia on the growth performance of Alnus incana. Plant Soil 118 145–150

    Article  Google Scholar 

  • Clawson M, Gawronski J and Benson DR 1999 Dominance of Frankia strains in stands of Alnus incana subsp. rugosa and Myrica pensylvanica. Can. J. Bot. 77 1203–1207

    Google Scholar 

  • Cournoyer B and Normand P 1992 Electropermeabilization of Frankia intact cells to plasmid DNA. Acta Oecologica 13 369–378

    Google Scholar 

  • Dawson JO 1999 Foreword. Can. J. Bot. 77. doi:10.1139/cjb7709foreword

  • Dawson JO, Camire C and Lalonde M 1985 Preface. Plant Soil 87 xi–xii

    Article  Google Scholar 

  • Diem HG, Gauthier D and Dommergues Y 1983 An effective strain of Frankia from Casuarina sp. Can. J. Bot. 61 2815–2821

    Article  Google Scholar 

  • Fortunato A, Santos P, Gracxa I, Gouveia M, Martins S, Ricardo C, Pawloski K and Ribeiro A 2007 Isolation and characterization of cgchi3, a nodule-specific gene from Casuarina glauca encoding a class III chitinase. Physiol. Plant. 130 418–426

    Article  CAS  Google Scholar 

  • Furnholm T, Beauchemin N and Tisa LS 2012 Development of a semi-high-throughput growth assay for the filamentous actinobacteria Frankia. Arch. Microbiol. 194 13–20

    Article  PubMed  CAS  Google Scholar 

  • Gardes M and Lalonde M 1987 Identification and subgrouping of Frankia strains using sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Physiol. Plant. 70 237–244

    Article  CAS  Google Scholar 

  • Gauthier D, Diem H and Dommergues Y 1981 In vitro nitrogen fixation by two actinomycete strains isolated from Casuarina nodules. Appl. Environ. Microbiol. 41 306–308

    PubMed  CAS  Google Scholar 

  • Gherbi H, Duhoux E, Franche C, Pawlowski K, Nasser A, Berry AM and Bogusz D 1997 Cloning of a full-length symbiotic hemoglobin cDNA and in situ localization of the corresponding mRNA in Casuarina glauca root nodule. Physiol. Plant. 99 608–616

    Article  CAS  Google Scholar 

  • Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Peret B, Laplaze L, Franche C, Parniske M and Bogusz D 2008 SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc. Natl. Acad. Sci. USA 105 4928–4932

    Article  PubMed  CAS  Google Scholar 

  • Ghodhbane-Gtari F, Essoussi I, Chattaoui M and Chouaia B 2010 Isolation and characterization of non-Frankia actinobacteria from root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia. Symbiosis 50 51–57

    Article  CAS  Google Scholar 

  • Girgis M, Ishac Y, Diem H and Dommergues Y 1992 Selection of salt tolerant Casuarina glauca and Frankia. Acta Oecologica 13 443–451

    Google Scholar 

  • Goetting-Minesky MP and Mullin BC 1994 Differential gene expression in an actinorhizal symbiosis evidence for a nodule-specific cysteine proteinase. Proc. Natl. Acad. Sci. USA 91 9891–9895

    Article  PubMed  CAS  Google Scholar 

  • Gordon JC and Dawson JO 1979 Potential uses of nitrogen-fixing trees and shrubs in commercial forestry. Bot. Gaz. 140S S88–S90

    Google Scholar 

  • Gordon JC, Wheeler CT and Perry DA 1979 Introduction; in Symbiotic nitrogen fixation in the management of temperate forests (eds) JC Gordon, CT Wheeler, DA Perry and OR Corvallis (Oregon State University: Forest Research Laboratory) p 1

  • Goyal AK, Basistha BC, Sen A and Middha SK 2011 Antioxidant profiling of Hippophae salicifolia growing in sacred forests of Sikkim, India. Funct. Plant Biol. 138 697–701

    Article  Google Scholar 

  • Gtari M, Ghodhbane-Gtari F, Nouioui I, Beauchemin N and Tisa LS 2012 Phylogenetic perspectives of nitrogen-fixing actinobacteria. Arch. Microbiol. 194 3–11

    Article  PubMed  CAS  Google Scholar 

  • Guan C, Akkermans ADL, van Kammen A, Bisseling T and Pawlowski K 1997 ag13 is expressed in Alnus glutinosa nodules in infected cells during endosymbiont degradation in the nodule pericycle. Physiol. Plant. 99 601–607

    Article  CAS  Google Scholar 

  • Haansuu JP, Klika KD, Soderholm PP, Ovcharenko VV, Pihlaja K, Haahtela KK and Vuorela PM 2001 Isolation and biological activity of frankiamide. J. Ind. Microbiol. Biotechnol. 27 62–66

    Article  PubMed  CAS  Google Scholar 

  • Hahn D, Dorsch M, Stackebrandt E and Akkermans ADL 1989 Synthetic oligonucleotide probes for identification of Frankia strains. Plant Soil 118 211–219

    Article  CAS  Google Scholar 

  • Hammad Y, Nalin R, Marechal J, Fiasson K, Pepin R, Berry AM, Normand P and Domenach A-M 2003 A possible role for phenylacetic acid (PAA) in Alnus glutinosa nodulation by Frankia. Plant Soil 254 193–205

    Article  CAS  Google Scholar 

  • Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P, Normand P and Bogusz D 2011 Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol. 156 1–12

    Article  Google Scholar 

  • Horriere F 1984 In vitro physiological approach to classification of Frankia isolates of 'the Alnus group' based on urease, protease and ß-glucosidase activities. Plant Soil 78 7–13

    Article  CAS  Google Scholar 

  • Huss-Danell K and Wheeler CT 1987 Frankia and actinorhizal plants. Physiol. Plant. 70 235

  • Jeong S-C and Myrold DD 1999 Genomic fingerprinting of Frankia microsymbionts from Ceanothus copopulations using repetitive sequences and polymerase chain reactions. Can. J. Bot. 77 1220–1230

    CAS  Google Scholar 

  • Klemmedson JO 1979 Ecological importance of actinomycete-nodulated plants in the western United States. Bot. Gaz. 140S S91–S96

    Google Scholar 

  • Kohls S, van Kessel C, Baker D, Grigal D and Lawrence D 1994 Assessment of N2 fixation and N cycling by Dryas along a chronosequence within the forelands of the Athabasca Glacier, Canada. Soil Biol. Biochem. 26 623–632

    Article  CAS  Google Scholar 

  • Krumholz GD, Chval MS, McBride MJ and Tisa LS 2003 Germination and physiological properties of Frankia spores. Plant Soil 254 57–67

    Article  CAS  Google Scholar 

  • Lalonde M 1979 Immunological and ultrastructural demonstration of nodulation of the European Alnus glutinosa (L.) Gaertn. host plant by an actinomycetal isolate from the North American Comptonia peregrina (L.) Coult. root nodule. Bot. Gaz. 140S S35–S43

    Google Scholar 

  • Lalonde M and Calvert H 1979 Production of Frankia hyphae and spores as an infective inoculant for Alnus species; in Symbiotic nitrogen fixation in the management of temperate forests (eds) JC Gordon, CT Wheeler, DA Perry and OR Corvallis (Oregon State University: Forest Research Laboratory) pp 95–110

  • Lechevalier M 1984 The taxonomy of the genus Frankia. Plant Soil 78 1–6

    Article  Google Scholar 

  • Lechevalier M and Ruan J 1984 Physiology and chemical diversity of Frankia spp. isolated from nodules of Comptonia peregrina (L.) Coult. and Ceanothus americanus L. Plant Soil 78 15–22

    Article  CAS  Google Scholar 

  • Lumini E and Bosco M 1999 Polymerase chain reaction - restriction fragment length polymorphisms for assessing and increasing biodiversity of Frankia culture collections. Can. J. Bot. 77 1261–1269

    CAS  Google Scholar 

  • Lumini E, Bosco M, Puppi G, Isopi R, Frattegiani M, Buresti E and Favilli F 1994 Field performance of Alnus cordata Loisel (italian alder) inoculated with Frankia and VA-mycorrhizal strains in mine spoil afforestation plots. Soil Biol. Biochem. 26 659–661

    Article  Google Scholar 

  • Mastronunzio JE and Benson DR 2010 Wild nodules can be broken: proteomics of Frankia in field-collected root nodules. Symbiosis 50 13–26

    Article  CAS  Google Scholar 

  • Niemann JM, Tjepkema JD and Tisa LS 2005 Identification of the truncated hemoglobin gene in Frankia. Symbiosis 39 83–90

    Google Scholar 

  • Normand P 2003 Introduction. Plant Soil 254 vii

    Google Scholar 

  • Normand P, Fernandez MP, Simonet P and Domenach AM 1992 Introduction to the proceedings of the 8th Frankia and Actinorhizal Plants congress. Acta Oecologica 13 367–368

    Google Scholar 

  • Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, et al. 2007 Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res. 17 7–15

    Article  PubMed  Google Scholar 

  • Paschke M, Dawson J and David M 1989 Soil nitrogen mineralization in plantations of Juglans nigra interplanted with actinorhizal Elaeagnus umbellata or Alnus glutinosa. Plant Soil 118 33–42

    Article  Google Scholar 

  • Paschke MW and Dawson JO 1992 Frankia abundance in soils beneath Betula nigra and other non-actinorhizal woody plants. Acta Oecologica 13 407–416

    Google Scholar 

  • Pawlowski K 1997 Nodule-specific gene expression. Physiol. Plant. 99 617–631

    Article  CAS  Google Scholar 

  • Périnet P, Brouillette J, Fortin J and Lalonde M 1985 Large scale inoculations of actinorhizal plants with Frankia. Plant Soil 87 175–183

    Article  Google Scholar 

  • Pommer E 1956 Beiträge zur Anatomie und Biologie der Wurzelknöllchen von Alnus glutinosa Gaertn. Flora 14 603–634

    Google Scholar 

  • Pommer E 1959 Uber die Isolierung des Endophyten aus den Wurzelknöllchen Alnus glutinosa Gaertn. und über erfolgreiche Re-Infektionsversuche. Ber. Deutsch Botan. Gesell. 72 138–150

    Google Scholar 

  • Prakash R and Cummings B 1988 Creation of novel nitrogen-fixing actinomycetes by protoplast fusion of Frankia and Streptomyces. Plant Mol. Biol. 10 281–289

    Article  CAS  Google Scholar 

  • Resch H 1980 Utilization of Red Alder in the pacific Northwest. For. Prod. J. 30 21–26

    Google Scholar 

  • Ribeiro A, Akkermans ADL, van Kammen A, Bisseling T and Pawlowski K 1995 A nodule-specific gene encoding a subtilisin-like protease is expressed in early stages of actinorhizal nodule development. Plant Cell 7 785–794

    PubMed  CAS  Google Scholar 

  • Ribeiro A, Berry AM, Pawlowski K and Santos P 2011 Actinorhizal plants. Funct. Plant Biol. 38 v–vii

  • Ritchie NJ and Myrold DD 1999 Phylogenetic placement of uncultured Ceanothus microsymbionts using 16S rRNA gene sequences. Can. J. Bot. 77 1208–1213

    CAS  Google Scholar 

  • Santos CL and Tavares F 2012 A step further on Frankia biology. Arch. Microbiol. 194 1–2

    Article  PubMed  CAS  Google Scholar 

  • Schwintzer CR and Tjepkema JD 2005 Effect of oxygen concentration on growth and hemoglobin production in Frankia. Symbiosis 39 77–82

    CAS  Google Scholar 

  • Sellstedt A and Huss-Danell K 1984 Nitrogen fixation and relative efficiency of nitrogenase in Alnus incana grown in different cultivation systems. Plant Soil 78 147–158

    Article  CAS  Google Scholar 

  • Sellstedt A and Mattsson U 1994 Hydrogen metabolism in Casuarina Frankia immunolocalization of nitrogenase and hydrogenase. Soil Biol. Biochem. 26 583–592

    Article  CAS  Google Scholar 

  • Sellstedt A, Normand P and Dawson JO 2007 Frankia – the friendly bacteria – infecting actinorhizal plants. Physiol. Plant. 130 315–317

    Article  CAS  Google Scholar 

  • Sellstedt A and Winship L 1987 Hydrogen metabolism of Casuarina root nodules: A comparison of two inoculum sources. Physiol. Plant 70 367–372

    Article  CAS  Google Scholar 

  • Silvester W and Harris S 1994 Preface. Soil Biol. Biochem. 26 v

    Article  Google Scholar 

  • Simonet P, Normand P, Moiroud A and Lalonde M 1985 Restriction enzyme digestion patterns of Frankia plasmids. Plant Soil 87 49–60

    Article  CAS  Google Scholar 

  • Stowers M and Smith J 1985 Inoculation and production of container-grown red alder seedlings. Plant Soil 87 153–160

    Article  Google Scholar 

  • Svistoonoff S, Gherbi H, Nambiar-Veetil M and Zhong C 2010 Contribution of transgenic Casuarinaceae to our knowledge of the actinorhizal symbioses. Symbiosis 50 3–11

    Article  CAS  Google Scholar 

  • Swensen SM and Mullin BC 1997 Phylogenetic relationships among actinorhizal plants. The impact of molecular systematics and implications for the evolution of actinorhizal symbioses. Physiol. Plant. 99 565–573

    Article  CAS  Google Scholar 

  • Tavares F, Santos CL and Sellstedt A 2007 Reactive oxygen species in legume and actinorhizal nitrogen-fixing symbioses: the microsymbiont’s responses to an unfriendly reception. Physiol. Plant. 130 344–356

    Article  CAS  Google Scholar 

  • Tisa L, McBride M and Ensign JC 1983 Studies of growth and morphology of Frankia strains EAN1pec, EuI1c, CpI1, and ACN1AG. Can. J. Bot. 61 2768–2773

    Article  CAS  Google Scholar 

  • Tisa LS 2005 Preface. Symbiosis 39 59

    Google Scholar 

  • Tisa LS, Chval MS, Krumholz GD and Richards J 1999 Antibiotic resistance patterns of Frankia strains. Can. J. Bot. 77 1257–1260

    CAS  Google Scholar 

  • Tjepkema J, Ormerod W and Torrey JG 1980 Vesicle formation and acetylene reduction activity in Frankia sp. CpI1 cultured in defined nutrient media. Nature 287 633–635

    Google Scholar 

  • Tobita H, Uemura A, Kitao M, Kitaoka S, Maruyama Y and Utsugi H 2011 Effects of elevated atmospheric carbon dioxide, soil nutrients and water conditions on photosynthetic and growth responses of Alnus hirsuta. Funct. Plant Biol. 138 702–710

    Article  Google Scholar 

  • Torrey JG 1987 Endophyte sporulation in root nodules of actinorhizal plants. Physiol. Plant. 70 279–288

    Google Scholar 

  • Torrey JG and Tjepkema JD 1979 Symbiotic nitrogen fixation in actinomycete-nodulated plants. Preface and program. Bot. Gaz. 140S Si–Sv

    Google Scholar 

  • Torrey JG and Tjepkema JD 1983 International conference on the biology of Frankia. Introduction. Can. J. Bot. 61 2765–2767

  • Varghese R, Chauhan VS and Misra AK 2003. Evolutionary implications of nucleotide sequence relatedness between Alnus nepalensis and Alnus glutinosa and also between corresponding Frankia microsymbionts. Plant Soil 254 219–227

    Article  CAS  Google Scholar 

  • Van Ghelue M, Lovaas E, Ringo E and Solheim B 1997 Early interactions between Alnus glutinosa and Frankia strain ArI3. Production and specificity of root hair deformation factor(s). Physiol. Plant. 99 579–587

    Article  Google Scholar 

  • Wall LG, Chaia E and Dawson JO 2010 Special Volume devoted to the 15th International Frankia and Actinorhizal Plant Meeting. Symbiosis 50 1–2

    Article  Google Scholar 

  • Wheeler CT, Crozier A and Sandberg G 1984 The biosynthesis of indole-3-acetic acid by Frankia. Plant Soil 78 99–104

    Google Scholar 

  • Winship L and Chaudhary A 1979 Nitrogen fixation by Datisca glomerata : a new addition to the list of actinorhizal diazotrophic plants; in Symbiotic nitrogen fixation in the management of temperate forests (eds) JC Gordon, CT Wheeler, DA Perry and OR Corvallis (Oregon State University: Forest Research Laboratory) p 485

  • Yanthan M, Biate D and Misra AK 2011 Taxonomic resolution of actinorhizal Myrica species from Meghalaya (India) through nuclear rDNA sequence analyses. Funct. Plant Biol. 38 738–746

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Normand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Normand, P. A brief history of Frankia and actinorhizal plants meetings. J Biosci 38, 677–684 (2013). https://doi.org/10.1007/s12038-013-9373-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9373-0

Keywords

Navigation