Skip to main content

Early Interactions, Infection And Nodulation In Actinorhizal Symbiosis

  • Chapter
Nitrogen-fixing Actinorhizal Symbioses

Part of the book series: Nitrogen Fixation: Origins, Applications, and Research Progress ((NITR,volume 6))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angulo Carmona, A. F. (1974). La formation des nodules fixateurs d’azote chez Alnus glutinosa (L.) Vill. Acta Bot. Neerl., 23, 257-303.

    Google Scholar 

  • Arnone, J. A., Kohls, S. J., and Baker, D. D. (1994). Nitrate effects on nodulation and nitrogenase activity of actinorhizal Casuarina studied in split root systems. Soil Biol. Biochem., 26, 599-606.

    Article  CAS  Google Scholar 

  • Baker, A., Hill, G. F., and Parsons, R. (1997). Alteration of N nutrition in Myrica gale induces changes in nodule growth, nodule activity and amino acid composition. Physiol. Plant., 99, 632-639.

    Article  CAS  Google Scholar 

  • Baker, A., and Parsons, R. (1997). Evidence for N feedback regulation of N2 fixation in Alnus glutinosa L. J. Exp. Bot., 48, 67-73.

    Article  CAS  Google Scholar 

  • Baker, D. D. (1987). Relationships among pure culture strains of Frankia based on host specificity. Physiol. Plant., 70, 245-248.

    Article  Google Scholar 

  • Benoit, L. F., and Berry, A. M. (1997). Flavonoid-like compounds from seeds of red alder (Alnus rubra) influence host nodulation by Frankia (Actinomycetales). Physiol. Plant., 99, 588-593.

    Article  CAS  Google Scholar 

  • Benson, D. R., and Clawson, M. L. (2000). Evolution of the actinorhizal plant symbiosis. In E. W. Triplett (Ed.), Prokaryotic nitrogen fixation: A model system for analysis of a biological process (pp. 207-224). Wymondham, UK: Horizon Scientific Press.

    Google Scholar 

  • Benson, D. R., Stephens, D. W., Clawson, M. L., and Silvester, W. B. (1996). Amplification of 16S rRNA genes from Frankia strains in root nodules of Ceanothus griseus, Coriaria arborea, Coriaria plumosa, Discaria toumatou, and Purshia tridentata. Appl. Environ. Microbiol., 62, 2904-2909.

    PubMed  CAS  Google Scholar 

  • Berg, R. H. (1999a). Frankia forms infection threads. Can. J. Bot., 77, 1327-1333.

    Article  Google Scholar 

  • Berg, R. H. (1999b). Cytoplasmic bridge formation in the nodule apex of actinorhizal root nodules. Can. J. Bot., 77, 1351-1357.

    Article  Google Scholar 

  • Berry, A. M. (1984). The actinorhizal infection process: Review of recent research. In M. J. Klug and C. A. Reddy (Eds.), Current perspectives in microbial ecology (pp. 222-229). Washington, DC: ASM.

    Google Scholar 

  • Berry, A. M., and Torrey, J. G. (1983). Root hair deformation in the infection process of Alnus rubra. Can. J. Bot., 66, 2863-2876.

    Google Scholar 

  • Berry, A. M., Torrey J. G., and McCully, M. E. (1983). The fine structure of root hair wall and surface mucilage in the actinorhizal host Alnus rubra. In R. Goldberg (Ed.), Plant molecular biology (pp. 319-327). New York: Liss.

    Google Scholar 

  • Berry, A. M., McIntyre, M., and McCully M. E. (1986). Fine structure of root hair infection leading to nodulation in the Frankia-Alnussymbiosis. Can. J. Bot., 64, 292-305.

    Google Scholar 

  • Berry, A. M., and McCully, M. E. (1990). Callose-containing deposits in relation to root hair infections of Alnus rubra Bong. by Frankia. Can. J. Bot., 68, 798-802

    Article  Google Scholar 

  • Berry, A. M., Rasmussen, U., Bateman, K., Huss-Danell, K., Lindwall, S., and Bergman, B. (2002). Arabinogalactan proteins are expressed at the symbiotic interface in root nodules of Alnus spp. New Phytol., 155, 469-479.

    Article  CAS  Google Scholar 

  • Berry, A. M., Kahn, R. K. S., and Booth, M. C. (1989). Identification of indole compounds secreted by Frankia HFPArI3 in defined culture medium Plant Soil, 118, 205-209.

    Article  CAS  Google Scholar 

  • Berry, A. M., and Sunell, L. A. (1990). The infection process and nodule development. In C. R. Schwintzer and J. D. Tjepkma (Eds.), The biology ofFrankia and actinorhizal plants (pp. 61-81). San Diego, CA: Academic Press.

    Google Scholar 

  • Bolaños, L., Brewin, N. J., and Bonilla, I. (1996). Effects of boron on Rhizobium-legume cell-surface interactions and nodule development. Plant Physiol., 110, 1249-1256

    PubMed  Google Scholar 

  • Bolaños, L., Redondo-Nieto, M., Bonilla, I., and Wall, L. G. (2002). Boron requirement for growth, nitrogen fixation and nodulation of Frankia BCU110501. Physiol. Plant, 115, 563-570.

    Article  PubMed  Google Scholar 

  • Bonilla, I., García-González, M., and Mateo, P. (1990). Boron requirement in cyanobacteria. Its possible role in the early evolution of photosynthetic organisms. Plant Physiol., 94, 1554-1560.

    PubMed  CAS  Google Scholar 

  • Burggraaf, A. J. P., van der Linden, J., and Tak, T. (1983). Studies on the localization of infectible cells on Alnus glutinosa roots. Plant Soil, 74, 175-188.

    Article  Google Scholar 

  • Caetano-Anollés, G., and Gresshoff, P.M. (1991). Plant genetic control of nodulation. Ann. Rev. Microbiol., 45, 345-382.

    Article  Google Scholar 

  • Callaham, D., and Torrey, J. G. (1977). Prenodule formation and primary nodule development in roots of Comptonia (Myricaceae). Can. J. Bot., 55, 2306-2318.

    Google Scholar 

  • Callaham, D., Newcomb, W., Torrey, J. G., and Peterson, R. L. (1979). Root hair infection in actinomycete-induced root nodule initiation in Casuarina, Myrica and Comptonia. Bot. Gaz. (Chicago), 140 (Suppl.), S1-S9.

    Google Scholar 

  • Cérémonie, H., Debellé, F., and Fernandez, M. P. (1999). Structural and functional comparison of Frankia root hair deforming factor and rhizobia Nod factor. Can. J. Bot., 77, 1293-1301.

    Article  Google Scholar 

  • Chaboud, A., and Lalonde, M. (1982). Lectin binding on surfaces of Frankia strains. Can. J. Bot., 61, 2889-2897.

    Article  Google Scholar 

  • Chaia, E., Valverde, C., and Wall, L. G. (2006). Local adaptation of Frankiato different Discaria (Rhamnaceae) host species growing in Patagonia. Curr. Microbiol., 53,523-528.

    Google Scholar 

  • Chaia, E., and Raffaele, E. (2000). Spatial patterns of root branching and actinorhizal nodulation in Discaria trinervis seedlings. Symbiosis, 29, 329-341.

    Google Scholar 

  • Cusato, M. S., and Tortosa, R. D. (2000). Interactions between Frankiaand crops. Phyton, 68, 47-53.

    Google Scholar 

  • Dénarié, J., Debellé, F., and Promé, J. C. (1996). Rhizobium lipochitooligosaccharide nodulation factors: Signaling molecules mediating recognition and morphogenesis. Annu. Rev. Biochem., 65, 503-535.

    Article  PubMed  Google Scholar 

  • Dobritsa, S. V., and Novik, S. N. (1992). Feedback regulation of nodule formation in Hippophaë rhamnoides. Plant Soil, 144, 45-50.

    Article  Google Scholar 

  • Franche, C., Laplaze, L., Duhoux, E., and Bogusz, D. (1998). Actinorhizal symbioses: Recent advances in plant molecular and genetic transformation studies. Crit. Rev. Plant Sci., 17, 1-28.

    Article  CAS  Google Scholar 

  • Gabbarini, L., and Wall, L. G. (2002). Novel interactions in actinorhizal symbiosis. 8th New Phytologist Symposium, Soil microbes and plant productivity, 9-14 June 2002, Helsinki, Finland. Book of Abstracts.

    Google Scholar 

  • Gentili, F. (2003). Nutrient effects on nodulation and N 2 fixation in actinorhizal symbioses.Ph.D. thesis. Swedish University of Agricultural Sciences, Agragria 392, Umeå, Sweden.

    Google Scholar 

  • Gentili, F., and Huss-Danell, K. (2002). Phosphorus modifies the effects of nitrogen on nodulation in split-root systems of Hippophaë rhamnoides. New Phytol, 153, 53-61.

    Article  CAS  Google Scholar 

  • Gentili, F., and Huss-Danell, K. (2003). Local and systemic effects of phosphorous and nitrogen on nodulation and nodule function in Alnus incana. J. Exp. Bot., 54, 2757-2767.

    Article  PubMed  CAS  Google Scholar 

  • Glick, B. R. (1999). Biochemical and genetic mechanisms used by plant growth promoting bacteria. New York, NY: Imperial College Press.

    Google Scholar 

  • Hammad, Y., Maréchal, J., Cournoyer, B., Norman, P., and Domenach, A.-M. (2001). Modification of the protein expression pattern induced in the nitrogen-fixing actinomycete Frankiasp. strain ACN14a-tsr by root exudates of its symbiotic host Alnus glutinosaand cloning of the sodFgene. Can. J. Microbiol., 47, 541-547.

    Article  PubMed  CAS  Google Scholar 

  • Hammad, Y., Nalin, R., Maréchal, J., Fiasson, K., Pepin, R., et al. (2003). A possible role for phenyl acetic acid (PAA) on Alnus glutinosanodulation by Frankia. Plant Soil, 254,193-205.

    Google Scholar 

  • Heidstra, R., Geurts, R., Franssen, H., Spaink, H. P., van Kammen, A., and Bisseling, T. (1994). Root hair deformation activity of nodulation factors and their fate on Vicia sativa. Plant Physiol., 105, 787-797.

    PubMed  CAS  Google Scholar 

  • Hirsch, A. M., and La Rue, T. A. (1997). Is the legume nodule a modified root or stem or an organ sui generis? Crit. Rev. Plant. Sci., 16, 361-392.

    Article  Google Scholar 

  • Hughes, M., Donnelly, C., Crozier, A., and Wheeler, C. T. (1999). Effects of the exposure of roots of Alnus glutinosa to light on flavonoids and nodulation. Can. J. Bot., 77, 1-5.

    Article  Google Scholar 

  • Huss-Danell, K. (1997). Actinorhizal symbioses and their N2fixation. New Phytol., 136, 375-405.

    Article  CAS  Google Scholar 

  • Israel, D. W. (1993). Symbiotic dinitrogen fixation and host-plant growth during development of and recovery from phosphorus deficiency. Physiol. Plant., 88, 294-300.

    Article  CAS  Google Scholar 

  • Jeong, S. C., Ritchie, N. J., and Myrold, D. D. (1999). Molecular phylogenies of plant and Frankiasupport multiple origins of actinorhizal symbioses. Mol. Phylogen. Evol., 13, 493-503.

    Article  CAS  Google Scholar 

  • Knowlton, S., Berry, A. M., and Torrey, J.G. (1980). Evidence that associated soil bacteria may influence root hair infection of actinorhizal plants by Frankia. Can. J. Microbiol., 26, 971-7.

    Article  PubMed  CAS  Google Scholar 

  • Kohls, S. J., and Baker, D. D. (1989). Effects of substrate nitrate concentration on symbiotic nodule formation in actinorhizal plants. Plant Soil, 118, 171-179.

    Article  CAS  Google Scholar 

  • Krusell, L., Madsen, L. H., Sato, S., Aubert, G., Genua, A., et al. (2002). Shoot control of root development and nodulation is mediated by a receptor like kinase. Nature, 420, 422-426

    Article  PubMed  CAS  Google Scholar 

  • Laplaze, L., Duhoux, E., Franche, C., Frutz, T., Svistoonoff, S., et al. (2000). Casuarina glauca prenodule cells display the same differentiation as the corresponding nodule cells. Mol. Plant-Microbe Interact., 13, 107-112.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Q., and Berry, A. M. (1991a). The infection process and nodule initiation in the Frankia-Ceanothus root nodule symbiosis. Protoplasma, 163, 82-92.

    Article  Google Scholar 

  • Liu, Q., and Berry, A. M. (1991b). Localization and characterization of pectic polysacharides in roots and root nodules of Ceanothus spp. during intercellular infection by Frankia. Protoplasma, 163, 93-101.

    Article  CAS  Google Scholar 

  • Loh, J., Lohar, D. P., Andersen, B., and Stacey, G. (2002). A two-component regulator mediates population-density-dependent expression of the Bradyrhizobium japonicum nodulation genes. J. Bacteriol., 184, 1759-1766.

    Article  PubMed  CAS  Google Scholar 

  • Loh, J., Pierson, E. A., Pierson III, L. S., Stacey, G., and Chaterjee A. (2002b). Quorum sensing in plant-associated bacteria. Curr. Op. Plant Biol., 5, 285-290.

    Article  CAS  Google Scholar 

  • Lugtenberg B. J. J., Dekkers, L., and Bloemberg G. V. (2001). Molecular determinants of rhizosphere colonization by pseudomonads. Ann. Rev. Phytopathol., 39, 461-490.

    Article  CAS  Google Scholar 

  • MacConnell, J. T., and Bond, G. (1957). A comparison of the effect of combined nitrogen on nodulation in non-legumes and legumes. Plant Soil, 8, 378-388.

    Article  CAS  Google Scholar 

  • Mathesius, U. (2001). Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J. Exp. Bot., 52, 419-426.

    PubMed  CAS  Google Scholar 

  • Mathesius, U., Weinman, J. J., Rolfe, B. G., and Djordjevic, M. A. (2000). Rhizobia can induce nodules in white clover by “hijacking” mature cortical cells activated during lateral root development. Mol. Plant-Microbe Interact., 13, 170-182.

    Article  PubMed  CAS  Google Scholar 

  • Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anollés, G., et al. (2003). Extensive and specific responses of a eucaryote to bacterial quorum-sensing signals. Proc. Natl. Acad. Sci. U.S.A., 100, 1444-1449.

    Article  PubMed  CAS  Google Scholar 

  • Maunuksela, L., Zeep, K., Koivula, T., Zeyer, J., Haatela, K., and Hahn, D. (1999). Analysis of Frankia populations in three soils devoid of actinorhizal plants. FEMS Microbiol. Ecol., 28, 11-22

    Article  CAS  Google Scholar 

  • Miller, I. M., and Baker, D. D. (1985). The initiation, development and structure of root nodules in Elaeagnus angustifolia L. (Elaeagnaceae). Protoplasma, 128, 107-119.

    Article  Google Scholar 

  • Miller, I. M., and Baker, D. D. (1986). Nodulation of actinorhizal plants by Frankia strains capable of both root hair infection and intercellular penetration. Protoplasma, 131, 82-91.

    Article  Google Scholar 

  • Miller, M. B., and Bassler, B. L. (2001). Quorum sensing in bacteria. Annu. Rev. Microbiol., 55, 165-99.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, R., Hayashi, M., Wu, G., Kouchi, H., Imaizumi-Anraku, H., et al. (2002). HAR1 mediates systemic regulation of symbiotic organ development. Nature, 420, 426-430

    Article  PubMed  CAS  Google Scholar 

  • Normand, P., Orso, S., Cournoyer, B., Jeannin, P., Chapelon, C., et al. (1996). Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int. J. Syst. Bacteriol., 46, 1-9.

    Article  PubMed  CAS  Google Scholar 

  • Okubara, P. A., Fujishige, N. A., Hirsch, A. M., and Berry, A. M. (2000). Dg93, a nodule-abundant mRNA of Datisca glomerata with homology to a soybean early nodulin gene. Plant Physiol., 122, 1073-1079.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, R., Stanforth, A., Raven, J. A., and Sprent, J. I. (1993). Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant Cell Env., 16, 125-136.

    Article  CAS  Google Scholar 

  • Pawlowski, K., and Bisseling, T. (1996). Rhizobial and actinorhizal symbioses: What are the shared features? Plant Cell, 8, 1899-1913.

    Article  PubMed  CAS  Google Scholar 

  • Pawlowski, K., Swensen, S., Guan, C., Hadri, A.-E., Berry, A. M., and Bisseling, T. (2003). Distinct patterns of symbiosis-related gene expression in actinorhizal nodules from different plant families. Mol. Plant-Microbe Interact., 16, 796-807.

    Article  PubMed  CAS  Google Scholar 

  • Penmetsa, R. V., and Cook, D. R. (1997). A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science, 275, 527-530.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, D. A. (2000). Biosynthesis and release of rhizobial nodulation gene inducers by legumes. In E. W. Triplett (Ed.), Prokaryotic nitrogen fixation: A model system for the analysis of a biological process (pp. 349-363). Wymondham, UK: Horizon Scientific Press.

    Google Scholar 

  • Pizelle, G. (1965). L’azote minéral et la nodulation de l’aulne glutineux (Alnus glutinosa). Observations sur des plantes cultivées avec systémes racinaires compartimentés. Bulletin de l’Ecole Nationale Supérieure Agronomique, 7, 55-63.

    Google Scholar 

  • Pizelle, G. (1966). L’azote minéral et la nodulation de l’aulne glutineux (Alnus glutinosa). II. Observations sur l’action inhibitrice de l’azote minéral á l’égard de la nodulation. Annales de l’Institut Pasteur, 111, 259-264.

    Google Scholar 

  • Prin, Y., and Rougier, M. (1986). Cytological and histochemical characterization of the axenic root surface of Alnus glutinosa. Can. J. Bot., 64, 2216-2226.

    Article  Google Scholar 

  • Pueppke, S. G., and Broughton, W. J. (1999). Rhizobiumsp. strain NGR234 and R. frediiUSDA257 share exceptionally broad, nested host-ranges. Mol. Plant-Microbe Interact., 12, 293-318.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez-Saad, H., Janse, J. D., and Akkermans, A. D. L. (1998). Root nodules of Ceanothus arboreus contain the N2-fixing Frankia endophyte and a phylogenetically related Nod-/Fix- actinomycete. Can. J. Microbiol., 44, 140-148.

    Article  CAS  Google Scholar 

  • Reddell, P., Yun, Y., and Shipton, W. A. (1997). Do Casuarina cunninghamiana seedlings dependent on symbiotic N2 fixation have higher phosphorus requirements than those supplied with adequate fertilizer nitrogen? Plant Soil, 189, 213-219.

    Article  CAS  Google Scholar 

  • Redondo-Nieto, M., Rivilla, R., El-Hamdaoui, A., Bonilla, I., and Bolaños, L. (2001). Boron deficiency affects early infection events in the pea-Rhizobium symbiotic interaction. Aust. J. Plant. Physiol., 28, 819-823.

    Google Scholar 

  • Ritchie, N. J., and Myrold, D. D. (1999b). Phylogenetic placement of uncultured Ceanothus microsymbionts using 16S rRNA gene sequences. Can. J. Bot., 77, 1208-1213.

    Article  CAS  Google Scholar 

  • Rodelas, B., Lithgow, J. K., Wisniewski-Dye, F., Hardman, A., Wilkinson, A., et al. (1999). Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J. Bacteriol., 181, 3816-3823.

    PubMed  CAS  Google Scholar 

  • Scheres, B., van Engelen, F., van der Knaap, E., van de Wiel, C., van Kammen, A., and Bisseling, T. (1990). Sequential induction of nodulin gene expression in the developing pea nodule. Plant Cell, 2, 687-700.

    Article  PubMed  CAS  Google Scholar 

  • Searle, I. R., Men, A. E., Laniya, T. S., Buzas, D. M., Iturbe-Ormaetxe, I., et al. (2003). Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science, 299, 109-112.

    Article  PubMed  CAS  Google Scholar 

  • Sequerra, J., Capellano, A., Faure-Raynard, M., and Moiroud, A. (1993). Root hair infection process and myconodule formation on Alnus incana by Penicillium nodositatum. Can. J. Bot., 72, 955-962.

    Google Scholar 

  • Smolander, A., and Sundman, V. (1987). Frankia in acid soils of forests devoid of actinorhizal plants. Physiol. Plant., 70, 297-303.

    Article  Google Scholar 

  • Soltis, D. E., Soltis, P. S., Morgan, D. R., Swensen, S. M., Mullin, B. C., et al. (1995). Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl. Acad. Sci. U.S.A., 92, 2647-2651.

    Article  PubMed  CAS  Google Scholar 

  • Spaink, H. (2000). Root nodulation and infection factors produced by rhizobial bacteria. Annu. Rev. Microbiol., 54, 257-88.

    Article  PubMed  CAS  Google Scholar 

  • Swensen, S. (1996). The evolution of actinorhizal symbioses: Evidence for multiple origins of the symbiotic association. Am. J. Bot., 83, 1503-1512.

    Article  Google Scholar 

  • Swensen, S. M., and Mullin, B. C. (1997). Phylogenetic relationships among actinorhizal plants. The impact of molecular systematics and implications for the evolution of actinorhizal symbiosis. Physiol. Plant., 99, 565-573.

    Article  CAS  Google Scholar 

  • Thomas, K. A., and Berry, A. M. (1989). Effects of continuous nitrogen application and nitrogen preconditioning on nodulation and growth of Ceanothus griseus var. horizontalis. Plant Soil, 118, 181-187.

    Article  Google Scholar 

  • Tjepkema, J. D. (1978). The role of oxygen diffusion from the shoots and nodule roots in nitrogen fixation by root nodules of Myrica galeL. Can. J. Bot., 61, 2898-2909.

    Google Scholar 

  • Torrey, J. G. (1990). Cross-inoculation groups within Frankia and host-endosymbiont associations. In C. R. Schwintzer and J. D. Tjepkma (Eds.), The biology ofFrankiaand actinorhizal plants (pp. 83-106). San Diego, CA: Academic Press.

    Google Scholar 

  • Tsai, S. M., and Phillips, D. A. (1991). Flavonoids released naturally from alfalfa promote development of symbiotic Glomusspores in vitro. Appl. Environ. Microbiol., 57, 1485-1488.

    PubMed  CAS  Google Scholar 

  • Valverde, C. (2000). La simbiosis Discaria trinervis-Frankia.Regulación de la nodulación radicular. Ph.D. thesis. Facultad de Ciencias exactas, Universidad Nacional de La Plata, La Plata, Argentina.

    Google Scholar 

  • Valverde, C., and Wall, L. G. (1999a). Time course of nodule development in Discaria trinervis (Rhamnaceae)-Frankia symbiosis. New Phytol., 141, 345-354.

    Article  Google Scholar 

  • Valverde, C., and Wall, L. G. (1999b). Regulation of nodulation in Discaria trinervis (Rhamnaceae)- Frankia symbiosis. Can. J. Bot., 77, 1302-1310.

    Article  Google Scholar 

  • Valverde, C., and Wall, L. G. (2002). Nodule distribution on the roots of actinorhizal Discaria trinervis (Rhamnaceae) in pots. Environ. Exp. Bot., 47, 95-100

    Article  Google Scholar 

  • Valverde, C., and Wall, L. G. (2003). The regulation of nodulation, nitrogen fixation and ammonium assimilation under a carbohydrate shortage stress in the Discaria trinervis-Frankia symbiosis. Plant Soil, 254, 139-153.

    Article  CAS  Google Scholar 

  • Valverde, C., Ferrari, A., and Wall, L. G. (2002). Phosphorus and the regulation of nodulation in the actinorhizal symbiosis between Discaria trinervis(Rhamnaceae) and FrankiaBCU110501. New Phytol., 153, 43-52

    Article  CAS  Google Scholar 

  • Valverde, C., Wall, L. G., and Huss-Danell, K. (2000). Regulation of nodulation and nodule mass relative to nitrogenase activity and nitrogen demand in seedlings of Discaria trinervis (Rhamnaceae). Symbiosis, 28, 49-62.

    CAS  Google Scholar 

  • van Ghelue, M., Løvaas, E., Ringø, E., and Solheim, B. (1997). Early interactions between Alnus glutinosa and Frankia strain ArI3. Production and specificity of root hair deformation factor(s). Physiol. Plant., 99, 579-587.

    Article  Google Scholar 

  • Wall, L. G., and Huss-Danell, K. (1997). Regulation of nodulation in Alnus-Frankia symbiosis. Physiol. Plant., 99, 594-600.

    Article  CAS  Google Scholar 

  • Wall, L. G. (2000). The actinorhizal symbiosis. J. Plant Growth Reg., 19, 167-182

    CAS  Google Scholar 

  • Wall, L. G., Chaia, E., Valverde, C., and Lucki, G. (2000a). Specificity in Discaria-Frankiasymbioses. In F. O. Pedrosa, M. Hungria, M. G. Yates, and W. E. Newton (Eds.), Nitrogen fixation: From molecules to crop productivity(pp. 461-462). Dordrecht, The Netherlands: Kluwer Academic.

    Google Scholar 

  • Wall, L. G., Hellsten, A., and Huss-Danell, K. (2000b). Nitrogen, phosphorous, and the ratio between them affect nodulation in Alnus incana and Trifolium pratense. Symbiosis, 29, 91-105

    Google Scholar 

  • Wall, L. G., Valverde, C., and Huss-Danell, K. (2003). Regulation of nodulation in the absence of N2 is different in actinorhizal plants with different infection pathways. J. Exp. Bot., 385, 1253-1258.

    Article  CAS  Google Scholar 

  • Werner, D. (1992). Symbiosis of plants and microbes. London, UK: Chapman and Hall.

    Google Scholar 

  • Wolters, D. J. (1998). IneffectiveFrankiain wet alder soil. Ph.D. thesis. Wageningen Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Wopereis, J., Pajuelo, E., Dazzo, F. B., Jiang, Q., Gresshoff, P. M., et al. (2000). Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J., 23, 97-114.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Shipton, W. A., and Reddel, P. (1997). Effects of phosphorus supply on in vitro growth and phosphatase activity of Frankia isolates from Casuarina. Plant Soil, 189, 75-79.

    Article  CAS  Google Scholar 

  • Yang, Y. (1995). The effect of phosphorus on nodule formation and function in the Casuarina-Frankia symbiosis. Plant Soil, 176, 161-169.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Wall, L.G., Berry, A.M. (2007). Early Interactions, Infection And Nodulation In Actinorhizal Symbiosis. In: Pawlowski, K., Newton, W.E. (eds) Nitrogen-fixing Actinorhizal Symbioses. Nitrogen Fixation: Origins, Applications, and Research Progress, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3547-0_6

Download citation

Publish with us

Policies and ethics