Skip to main content

Advertisement

Log in

Impacts of Elevated Atmospheric CO2 and O3 on Forests: Phytochemistry, Trophic Interactions, and Ecosystem Dynamics

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Prominent among the many factors now affecting the sustainability of forest ecosystems are anthropogenically-generated carbon dioxide (CO2) and ozone (O3). CO2 is the substrate for photosynthesis and thus can accelerate tree growth, whereas O3 is a highly reactive oxygen species and interferes with basic physiological functions. This review summarizes the impacts of CO2 and O3 on tree chemical composition and highlights the consequences thereof for trophic interactions and ecosystem dynamics. CO2 and O3 influence phytochemical composition by altering substrate availability and biochemical/physiological processes such as photosynthesis and defense signaling pathways. Growth of trees under enriched CO2 generally leads to an increase in the C/N ratio, due to a decline in foliar nitrogen and concomitant increases in carbohydrates and phenolics. Terpenoid levels generally are not affected by atmospheric CO2 concentration. O3 triggers up-regulation of antioxidant defense pathways, leading to the production of simple phenolics and flavonoids (more so in angiosperms than gymnosperms). Tannins levels generally are unaffected, while terpenoids exhibit variable responses. In combination, CO2 and O3 exert both additive and interactive effects on tree chemical composition. CO2-and O3-mediated changes in plant chemistry influence host selection, individual performance (development, growth, reproduction), and population densities of herbivores (primarily phytophagous insects) and soil invertebrates. These changes can effect shifts in the amount and temporal pattern of forest canopy damage and organic substrate deposition. Decomposition rates of leaf litter produced under elevated CO2 and O3 may or may not be altered, and can respond to both the independent and interactive effects of the pollutants. Overall, however, CO2 and O3 effects on decomposition will be influenced more by their impacts on the quantity, rather than quality, of litter produced. A prominent theme to emerge from this and related reviews is that the effects of elevated CO2 and O3 on plant chemistry and ecological interactions are highly context- and species-specific, thus frustrating attempts to identify general, global patterns. Many of the interactions that govern above- and below-ground community and ecosystem processes are chemically mediated, ultimately influencing terrestrial carbon sequestration and feeding back to influence atmospheric composition. Thus, the discipline of chemical ecology is fundamentally important for elucidating the impacts of humans on the health and sustainability of forest ecosystems. Future research should seek to increase the diversity of natural products, species, and biomes studied; incorporate long-term, multi-factor experiments; and employ a comprehensive “genes to ecosystems” perspective that couples genetic/genomic tools with the approaches of evolutionary and ecosystem ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449.

    Article  Google Scholar 

  • Agrell, J., Mcdonald, E. P., and Lindroth, R. L. 1999. Responses to defoliation in deciduous trees: effects of CO2 and light. Ecol. Bull. 47:84–95.

    Google Scholar 

  • Agrell, J., Mcdonald, E. P., and Lindroth, R. L. 2000. Effects of CO2 and light on tree phytochemistry and insect performance. Oikos 88:259–272.

    Article  CAS  Google Scholar 

  • Agrell, J., Kopper, B., Mcdonald, E. P., and Lindroth, R. L. 2005. CO2 and O3 effects on host plant preferences of the forest tent caterpillar (Malacosoma disstria). Glob. Chang Biol. 11:588–599.

    Article  Google Scholar 

  • Ainsworth, E. A., and Long, S. P. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165:351–371.

    Article  PubMed  Google Scholar 

  • Aldea, M., Hamilton, J. G., Resti, J. P., Zangerl, A. R., Berenbaum, M. R., Frank, T. D., and Delucia, E. H. 2006. Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings. Oecologia 149:221–232.

    Article  PubMed  Google Scholar 

  • Andersen, C. P. 2003. Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol. 157:213–228.

    Article  CAS  Google Scholar 

  • Anderson, J. M. 1991. The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol. Appl. 1:326–347.

    Article  Google Scholar 

  • Ashmore, M. R. 2005. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 28:949–964.

    Article  CAS  Google Scholar 

  • Asshoff, R., Zotz, G., and Körner, C. 2006. Growth and phenology of mature temperate forest trees in elevated CO2. Glob. Chang. Biol. 12: 848–861.

    Article  Google Scholar 

  • Awmack, C. S., Harrington, R., and Lindroth, R. L. 2004. Aphid individual performance may not predict population responses to elevated CO2 or O3. Glob. Chang. Biol. 10:1414–1423.

    Article  Google Scholar 

  • Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., Butterfield, J., Buse, A., Coulson, J. C., Farrar, J., Good, J. E. G., Harrington, R., Hartley, S., Jones, T. H., Lindroth, R. L., Press, M. C., Symrnioudis, I., Watt, A. D., and Whittaker, J. B. 2002. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Global Change Biol. 8:1–16.

    Article  Google Scholar 

  • Beedlow, P. A., Tingey, D. T., Phillips, D. L., Hogsett, W. E., and Olszyk, D. M. 2004. Rising atmospheric CO2 and carbon sequestration in forests. Front. Ecol. Environ. 2:315–322.

    Article  Google Scholar 

  • Berggren, A., Björkman, C., Bylund, H., and Ayres, M. P. 2009. The distribution and abundance of animal populations in a climate of uncertainty. Oikos 118:1121–1126.

    Article  Google Scholar 

  • Berner, R. A. 2005. The rise of trees and how they changed the Paleozoic atmosphere CO2, climate, and geology, pp. 1–7, in Ehleringer, J. R., Cerling, T. E., Dearing, M. D., (eds.). A History of Atmospheric CO2 and Its Effects on Plants, Animals, and Ecosystems. Springer, New York.

    Chapter  Google Scholar 

  • Betz, G. A., Gerstner, E., Stich, S., Winkler, B., Welzl, G., Kremmer, E., Langebartels, C., Heller, W., Sandermann, H., and Ernst, D. 2009a. Ozone affects shikimate pathway genes and secondary metabolites in saplings of European beech (Fagus sylvatica L.) grown under greenhouse conditions. Trees—Struct. Funct. 23:539–553.

    Google Scholar 

  • Betz, G. A., Knappe, C., Lapierre, C., Olbrich, M., Welzl, G., Langebartels, C., Heller, W., Sandermann, H., and Ernst, D. 2009b. Ozone affects shikimate pathway transcripts and monomeric lignin composition in European beech (Fagus sylvatica L.). Eur. J. Forest Res. 128:109–116.

    Article  CAS  Google Scholar 

  • Bezemer, T. M., and Jones, T. H. 1998. Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82:212–222.

    Article  Google Scholar 

  • Bidart-Bouzat, M. G., and Imeh-Nathaniel, A. 2008. Global change effects on plant chemical defenses against insect herbivores. Journal of Integrative Plant Biology 50:1339–1354.

    PubMed  CAS  Google Scholar 

  • Blande, J. D., Tiiva, P., Oksanen, E., and Holopainen, J. K. 2007. Emission of herbivore-induced volatile terpenoids from two hybrid aspen (Populus tremula x tremuloides) clones under ambient and elevated ozone concentrations in the field. Glob. Chang. Biol. 13:2538–2550.

    Article  Google Scholar 

  • Boege, K., and Marquis, R. J. 2005. Facing herbivory as you grow up: the ontogeny of resistance in plants. Trends Ecol. Evol. 20:441–448.

    Article  PubMed  Google Scholar 

  • Boerner, R. E. J., and Rebbeck, J. 1995. Decomposition and nitrogen release from leaves of three hardwood species grown under elevated O3 and/or CO2. Plant Soil 170:149–157.

    Article  CAS  Google Scholar 

  • Bonan, G. B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449.

    Article  PubMed  CAS  Google Scholar 

  • Booker, F. L., and Maier, C. A. 2001. Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles. Tree Physiol. 21:609–616.

    PubMed  CAS  Google Scholar 

  • Booker, F. L., Anttonen, S., and Heagle, A. S. 1996. Catechin, proanthocyanidin and lignin contents of loblolly pine (Pinus taeda) needles after chronic exposure to ozone. New Phytol. 132:483–492.

    Article  CAS  Google Scholar 

  • Bryant, J. P., and Julkunen-Tiitto, R. 1995. Ontogenic development of chemical defense by seedling resin birch: energy cost of defense production. J. Chem. Ecol. 21:883–896.

    Article  CAS  Google Scholar 

  • Bryant, J. P., Chapin, F. S. III, and Klein, D. R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368.

    Article  CAS  Google Scholar 

  • Cebrian, J. 1999. Patterns in the fate of production in plant communities. Am. Nat. 154:449–468.

    Article  PubMed  Google Scholar 

  • Cebrian, J., and Lartigue, J. 2004. Patterns of herbivory and decomposition in aquatic and terrestrial ecosystems. Ecol. Monogr. 74:237–259.

    Article  Google Scholar 

  • Ceulemans, R., Janssens, I. A., and Jach, M. E. 1999. Effects of CO2 enrichment on trees and forests: lessons to be learned in view of future ecosystem studies. Ann. Bot. 84:577–590.

    Article  CAS  Google Scholar 

  • Chameides, W. L., Kasibhatla, P. S., Yienger, J., and Levy II, H. 1994. Growth of continental-scale metro-agro-plexes, regional ozone pollution, and world food production. Science 264:74–77.

    Article  PubMed  CAS  Google Scholar 

  • Chapin, F. S. III. 1991. Effects of multiple environmental stresses on nutrient availability and use, pp. 67–88, in H. A. Mooney, W. E. Winner, and E. J. Pell (eds.). Response of Plants to Multiple Stresses. Academic Press, Inc., New York, NY.

    Google Scholar 

  • Cole, C. T., Anderson, J. E., Lindroth, R. L., and Waller, D. M. 2009. Rising concentrations of atmospheric CO2 have increased growth in natural stands of quaking aspen (Populus tremuloides). Glob. Chang. Biol. doi:10.1111/j.1365-2486.2009.02103.x.

  • Coley, P. D., Massa, M., Lovelock, C. E., and Winter, K. 2002. Effects of elevated CO2 on foliar chemistry of saplings of nine species of tropical tree. Oecologia 133:62–69.

    Article  Google Scholar 

  • Cotrufo, M. F., Ineson, P., and Scott, A. 1998a. Elevated CO2 reduces the nitrogen concentration of plant tissues. Glob. Chang. Biol. 4:43–54.

    Article  Google Scholar 

  • Cotrufo, M. F., Briones, M. J., and Ineson, P. 1998b. Elevated CO2 affects field decomposition rate and palatability of tree leaf litter: importance of changes in substrate quality. Soil Biol. Biochem. 36:1565–1571.

    Article  Google Scholar 

  • Cotrufo, M. F., Drake, B., and Ehleringer, J. R. 2005a. Palatability trials on hardwood leaf litter grown under elevated CO2: a stable carbon isotope study. Soil Biol. Biochem. 37:1105–1112.

    Article  CAS  Google Scholar 

  • Cotrufo, M. F., De Angelis, P., and Polle, A. 2005b. Leaf litter production and decomposition in a poplar short-rotation coppice exposed to free air CO2 enrichment (POPFACE). Glob. Chang. Biol. 11:971–982.

    Article  Google Scholar 

  • Couteaûx, M.-M., and Bolger, T. 2000. Interactions between atmospheric CO2 enrichment and soil fauna. Plant Soil 224:123–134.

    Article  Google Scholar 

  • Coûteaux, M.-M., Bottner, P., and Berg, B. 1995. Litter decomposition, climate and litter quality. Trends Ecol. Evol. 10:63–66.

    Article  Google Scholar 

  • Coûteaux, M. M., Kurz, C., Bottner, P., and Raschi, A. 1999. Influence of increased atmospheric CO2 concentration on quality of plant material and litter decomposition. Tree Physiol. 19:301–311.

    PubMed  Google Scholar 

  • Coviella, C., and Trumble, J. T. 1999. Effects of elevated atmospheric CO2 on insect-plant interactions. Conserv. Biol. 13:700–712.

    Article  Google Scholar 

  • Cseke, L. J., Tsai, C. J., Rogers, A., Nelsen, M. P., White, H. L., Karnosky, D. F., and Podila, G. K. 2009. Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2]. New Phytol. 182:891–911.

    Article  CAS  Google Scholar 

  • Cyr, H., and Pace, M. L. 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature 361:148–150.

    Article  Google Scholar 

  • Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P. L., Wofsy S. C., and Zhang, X. 2007. Couplings between changes in the climate system and biogeochemistry, in S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (eds.). Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York.

    Google Scholar 

  • Docherty, M., Wade, F. A., Hurst, D. K., Whittaker, J. B., and Lea, P. J. 1997. Responses of tree sap-feeding herbivores to elevated CO2. Glob. Chang. Biol. 3:51–59.

    Article  Google Scholar 

  • Donaldson, J. R., and Lindroth, R. L. 2008. Effects of variable phytochemistry and budbreak phenology on defoliation of aspen during a forest tent caterpillar outbreak. Agric. For. Entomol. 10:399–410.

    Article  Google Scholar 

  • Donaldson, J. R., Stevens, M. T., Barnhill, H. R., and Lindroth, R. L. 2006. Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). J. Chem. Ecol. 32:1415–1429.

    Article  PubMed  CAS  Google Scholar 

  • Dukes, J. S., Pontius, J., Orwig, D., Garnas, J. R., Rodgers, V. L., Brazee, N., Cooke, B., Theoharides, K. A., Stange, E. E., Harrington, R., Ehrenfeld, J., Gurevitch, J., Lerdau, M., Stinson, K., Wick, R., and Ayres, M. 2009. Responses of insect pests, pathogens, and invasive plant species to climate change in the forests of northeastern North America: what can we predict? Can. J. For. Res. 39:231–248.

    Article  Google Scholar 

  • Ellison, A. M., Bank, M. S., Clinton, B. D., Colburn, E. A., Elliott, K., Ford, C. R., Foster, D. R., Kloeppel, B. D., Knoepp, J. D., Lovett, G. M., Mohan, J., Orwig, D. A., Rodenhouse, N. L., Sobczak, W. V., Stinson, K. A., Stone, J. K., Swan, C. M., Thompson, J., Von Holle, B., and Webster. J. R. 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front. Ecol. Environ. 3:479–486.

    Article  Google Scholar 

  • Felzer, B. D., Kicklighter, D., Melillo, J., Wang, C., ZHUANG, Q., and PRINN, R. 2004. Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus 56B:230–248.

    CAS  Google Scholar 

  • Findlay, S., Carreiro, M., Krischik, V., and Jones, C. G. 1996. Effects of damage to living plants on leaf litter quality. Ecol. Appl. 6:269–275.

    Article  Google Scholar 

  • Finzi, A. C., and Schlesinger, A. H. 2002. Species control variation in litter decomposition in a pine forest exposed to elevated CO2. Glob. Chang. Biol. 8:1217–1229.

    Article  Google Scholar 

  • Finzi, A. C., Allen, A. S., Delucia, E. H., Ellsworth, D. S., and Schlesinger, W. H. 2001. Forest litter production, chemistry, and decomposition following 2 years of free-air CO2 enrichment. Ecology 82:470–484.

    Google Scholar 

  • Foster, M. A., Schultz, J. C., and Hunter, M. D. 1992. Modelling gypsy moth-virus-leaf chemistry interactions: implications of plant quality for pest and pathogen dynamics. J. Anim. Ecol. 61:509–520.

    Article  Google Scholar 

  • Fowler, D., Cape, J. N., Coyle, M., Flechard, C., Kuylenstierna, J., Hicks, K., Derwent, D., Johnson, C., and Stevenson, D. 1999. The global exposure of forests to air pollutants. Water Air Soil Pollut. 116:5–32.

    Article  CAS  Google Scholar 

  • Freiwald, V., Haikio, E., Julkunen-Tiitto, R., Holopainen, J. K., and Oksanen, E. 2008. Elevated ozone modifies the feeding behaviour of the common leaf weevil on hybrid aspen through shifts in developmental, chemical, and structural properties of leaves. Ent. Exp. Appl. 128:66–72.

    Article  CAS  Google Scholar 

  • Fuhrer, J., and Booker, F. 2003. Ecological issues related to ozone: agricultural issues. Environ. Int. 29:141–154.

    Article  PubMed  CAS  Google Scholar 

  • Gate, I. M., Mcneill, S., and Ashmore, M. R. 1995. Effects of air pollution on the searching behavior of an insect parasitoid. Water Air Soil Pollut. 85:1425–1430.

    Article  CAS  Google Scholar 

  • Haimi, J., Laamanen, J., Penttinen, R., Raty, M., Koponen, S., Kellomaki, S., and Niemela, P. 2005. Impacts of elevated CO2 and temperature on the soil fauna of boreal forests. Appl. Soil Ecol. 30:104–112.

    Article  Google Scholar 

  • Hall, M. C., Stiling, P., Hungate, B. A., Drake, B. G., and Hunter, M. D. 2005. Effects of elevated CO2 and herbivore damage on litter quality in a scrub oak ecosystem. J. Chem. Ecol. 31:2343–2356.

    Article  PubMed  CAS  Google Scholar 

  • Hall, M. C., Stiling, P., Moon, D. C., Drake, B. G., and Hunter, M. D. 2006. Elevated CO2 increases the long-term decomposition rate of Quercus myrtifolia leaf litter. Glob. Chang. Biol. 12:568–577.

    Article  Google Scholar 

  • Hamilton, J. G., Zangerl, A. R., Berenbaum, M. R., Pippen, J., Aldea, M., and Delucia, E. H. 2004. Insect herbivory in an intact forest understory under experimental CO2 enrichment. Oecologia 138:566–573.

    Article  PubMed  Google Scholar 

  • Hansen, R. A., Williams, R. S., Degenhardt, D. C., and Lincoln, D. E. 2001. Non-litter effects of elevated CO2 on forest floor microarthropod abundances. Plant Soil 236:139–144.

    Article  CAS  Google Scholar 

  • Hari, P., and Kulmala, L. (eds.). 2008. Boreal Forest and Climate Change. Advances in Global Change Research, Vol. 34. Springer, New York.

  • Hassan, R., Scholes, R., and Ash, N. (eds.). 2005. Ecosystems and Human Well-Being: Current State and Trends, Vol. 1. Island, Washington

  • Hättenschwiler, S., and Bretscher, D. 2001. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Glob. Chang. Biol. 7:565–579.

    Article  Google Scholar 

  • Hättenschwiler, S., and Schafellner, C. 1999. Opposing effects of elevated CO2 and N deposition on Lymantria monacha larvae feeding on spruce trees. Oecologia 118:210–217.

    Article  Google Scholar 

  • Hättenschwiler, S., Bühler, S., and Körner, C. 1999. Quality, decomposition and isopod consumption of tree litter produced under elevated CO2. Oikos 85:271–281.

    Article  Google Scholar 

  • Heath, R. L. 2008. Modification of the biochemical pathways of plants induced by ozone: what are the varied routes to change? Environ. Pollut. 155:453–463.

    Article  PubMed  CAS  Google Scholar 

  • Herms, D. A., and Mattson, W. J. 1992. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67:283–335.

    Article  Google Scholar 

  • Hillstrom, M.L., and Lindroth, R. L. 2008. Elevated atmospheric carbon dioxide and ozone alter forest insect abundance and community composition. Insect Conserv. Diversity 1:233–241.

    Article  Google Scholar 

  • Holton, M. K., Lindroth, R. L., and Nordheim, E. V. 2003. Foliar quality influences tree-herbivore-parasitoid interactions: effects of elevated CO2, O3, and plant genotype. Oecologia 137:233–244.

    Article  PubMed  Google Scholar 

  • Horner, J. D., Gosz, J. R., and Cates, R. G. 1988. The role of carbon-based plant secondary metabolites in decomposition in terrestrial ecosystems. Am. Nat. 132:869–883.

    Article  Google Scholar 

  • Huang, J. G., Bergeron, Y., Denneler, B., Berninger, F., and Tardif, J. 2007. Response of forest trees to increased atmospheric CO2. Crit. Rev. Plant Sci. 26:265–283.

    Article  CAS  Google Scholar 

  • Huttunen, L., Niemelä, P., Julkunen-Tiitto, R., Heiska, S., Tegelberg, R., Rousi, M., and Kellomaki, S. 2008. Does defoliation induce chemical and morphological defenses in the leaves of silver birch seedlings under changing climate? Chemoecology 18:85–98.

    Article  CAS  Google Scholar 

  • Johnson, D. W. 2006. Progressive N limitation in forests: review and implications for long-term responses to elevated CO2. Ecology 87:64–75.

    Article  PubMed  Google Scholar 

  • Jones, C. G., and Coleman, J. S. 1988. Plant stress and insect behavior: cottonwood, ozone and the feeding and oviposition preference of a beetle. Oecologia 76:51–56.

    Google Scholar 

  • Julkunen-Tiitto, R., Tahvanainen, J., and Silvola, J. 1993. Increased CO2 and nutrient status changes affect phytomass and the production of plant defensive secondary chemicals in Salix myrsinifolia (Salisb.). Oecologia 95:495–498.

    Google Scholar 

  • Kainulainen, P., Holopainen, T., and Holopainen, J. K. 2003. Decomposition of secondary compounds from needle litter of scots pine grown under elevated CO2 and O3. Glob. Chang. Biol. 9:295–304.

    Article  Google Scholar 

  • Kangasjärvi, J., Talvinen, J., Utriainen, M., and Karjalainen, R. 1994. Plant defence systems induced by ozone. Plant Cell Environ. 17:783–794.

    Article  Google Scholar 

  • Kangasjärvi, J., Jaspers, P., and Kollist, H. 2005. Signalling and cell death in ozone-exposed plants. Plant Cell Environ. 28:1021–1036.

    Article  Google Scholar 

  • Karl, T. R., Melillo, J. M., Peterson, T. C. (eds.). 2009. Global Climate Change Impacts in the United States. Cambridge University Press, New York.

    Google Scholar 

  • Karnosky, D. F., Percy, K. E., Xiang, B. X., Callan, B., Noormets, A., Mankovska, B., Hopkin, A., Sober, J., Jones, W., Dickson, R. E., and Isebrands, J. G. 2002. Interacting elevated CO2 and tropospheric O3 predisposes aspen (Populus tremuloides Michx.) to infection by rust (Melampsora medusae f. sp. tremuloidae). Glob. Chang. Biol. 8:329-338.

    Article  Google Scholar 

  • Karnosky, D. F., Zak, D. R., Pregitzer, K. S., Awmack, C. S., Bockheim, J. G., Dickson, R. E., Hendrey, G. R., Host, G. E., King, J. S., Kopper, B. J., Kruger, E. L., Kubiske, M. E., Lindroth, R. L., Mattson, W. J., Mcdonald, E. P., Noormets, A., Oksanen, E., Parsons, W. F. J., Percy, K. E., Podila, G. K., Riemenschneider, D. E., Sharma, P., Thakur, R., Sober, A., Sober, J. et al. 2003. Tropospheric O3 moderates responses of temperate hardwood forests to elevated CO2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Funct. Ecol. 17:289-304.

    Article  Google Scholar 

  • Karnosky, D. F., Pregitzer, K. S., Zak, D. R., Kubiske, M. E., Hendrey, G. R., Weinstein, D., Nosal, M., and Percy, K. E. 2005. Scaling ozone responses of forest trees to the ecosystem level in a changing climate. Plant Cell Environ. 28:965-981.

    Article  CAS  Google Scholar 

  • Karnosky, D. F., Skelly, J. M., Percy, K. E., and Chappelka, A. H. 2007. Perspectives regarding 50 years of research on effects of tropospheric ozone air pollution on US forests. Environ. Pollut. 147:489–506.

    Article  PubMed  CAS  Google Scholar 

  • Karonen, M., Ossipov, V., Ossipova, S., Kapari, L., Loponen, J., Matsumura, H., Kohno, Y., Mikami, C., Sakai, Y., Izuta, T., and Pihlaja, K. 2006. Effects of elevated carbon dioxide and ozone on foliar proanthocyanidins in Betula platyphylla, Betula ermanii, and Fagus crenata seedlings. J. Chem. Ecol. 32:1445–1458.

    Article  PubMed  CAS  Google Scholar 

  • Kasurinen, A., Riikonen, J., Oksanen, E., Vapaavuori, E., and Holopainen, T. 2006. Chemical composition and decomposition of silver birch leaf litter produced under elevated CO2 and O3. Plant Soil 282:261–280.

    Article  CAS  Google Scholar 

  • Kasurinen, A., Peltonen, P. A., Julkunen-Tiitto, R., Vapaavuori, E., Nuutinen, V., Holopainen, T., and Holopainen, J. K. 2007. Effects of elevated CO2 and O3 on leaf litter phenolics and subsequent performance of litter-feeding soil macrofauna. Plant Soil 292:25–43.

    Article  CAS  Google Scholar 

  • Kinney, K. K., Lindroth, R. L., Jung, S. M., and Nordheim, E. V. 1997. Effects of CO2 and NO 3 availability on deciduous trees: phytochemistry and insect performance. Ecology 78:215–230.

    Google Scholar 

  • Knepp, R. G., Hamilton, J. G., Mohan, J. E., Zangerl, A. R., Berenbaum, M. R., and Delucia, E. H. 2005. Elevated CO2 reduces leaf damage by insect herbivores in a forest community. New Phytol. 167:207–218.

    Article  PubMed  CAS  Google Scholar 

  • Knepp, R. G., Hamilton, J. G., Zangerl, A. R., Berenbaum, M. R., and Delucia, E. H. 2007. Foliage of oaks grown under elevated CO2 reduces performance of Antheraea polyphemus (Lepidoptera: Saturniidae). Environ. Entomol. 36:609–617.

    Article  PubMed  Google Scholar 

  • Koike, T., Tobita, H., Shibata, T., Matsuki, S., Konno, K., Kitao, M., Yamashita, N., and Maruyama, Y. 2006. Defense characteristics of seral deciduous broad-leaved tree seedlings grown under differing levels of CO2 and nitrogen. Popul. Ecol. 48:23-29.

    Article  Google Scholar 

  • Kontunen-Soppela, S., Ossipov, V., Ossipova, S., and Oksanen, E. 2007. Shift in birch leaf metabolome and carbon allocation during long-term open-field ozone exposure. Glob. Chang. Biol. 13:1053–1067.

    Article  Google Scholar 

  • Kopper, B. J., and Lindroth, R. L. 2003a. Responses of trembling aspen (Populus tremuloides) phytochemistry and aspen blotch leafminer (Phyllonorycter tremuloidiella) performance to elevated level of CO2 and O3. Agric. For. Entomol. 5:17–26.

    Article  Google Scholar 

  • Kopper, B. J., and Lindroth, R. L. 2003b. Effects of elevated carbon dioxide and ozone on the phytochemistry of aspen and performance of an herbivore. Oecologia 134:95–103.

    Article  PubMed  Google Scholar 

  • Kopper, B. J., Lindroth, R. L., and Nordheim, E. V. 2001. CO2 and O3 effects on paper birch (Betulaceae: Betula papyrifera) phytochemistry and whitemarked tussock moth (Lymantriidae: Orgyia leucostigma) performance. Environ. Entomol. 30:1119–1126.

    Article  CAS  Google Scholar 

  • Koricheva, J., Larsson, S., Haukioja, E., and Keinänen, M. 1998a. Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis. Oikos 83:212–226.

    Article  CAS  Google Scholar 

  • Koricheva, J., Larsson, S., and Haukioja, E. 1998b. Insect performance on experimentally stressed woody plants: a meta-analysis. Annu. Rev. Entomol. 43:195–216.

    Article  PubMed  CAS  Google Scholar 

  • Körner, C. 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytol. 172:393-411.

    Article  PubMed  CAS  Google Scholar 

  • Körner, C., Asshoff, R., Bignucolo, O., Hattenschwiler, S., Keel, S. G., Pelaez-Riedl, S., Pepin, S., Siegwolf, R. T. W., and Zotz, G. 2005. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362.

    Article  PubMed  CAS  Google Scholar 

  • Kuokkanen, K., Yan, S. C., and Niemela, P. 2003. Effects of elevated CO2 and temperature on the leaf chemistry of birch Betula pendula (Roth) and the feeding behaviour of the weevil Phyllobius maculicornis. Agric. For. Entomol. 5:209–217.

    Article  Google Scholar 

  • Kuokkanen, K., Niemela, P., Matala, J., Julkunen-Tiitto, R., Heinonen, J., Rousi, M., Henttonen, H., Tahvanainen, J., and Kellomaki, S. 2004. The effects of elevated CO2 and temperature on the resistance of winter-dormant birch seedlings (Betula pendula) to hares and voles. Glob. Chang. Biol. 10:1504–1512.

    Article  Google Scholar 

  • Kurpius, M. R., and Goldstein, A. H. 2003. Gas-phase chemistry dominates O3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere. Geophys. Res. Lett. 30:1371.

    Article  CAS  Google Scholar 

  • Kurz, W. A., Stinson, G., Rampley, G. J., Dymond, C. C., and Neilson, E. T. 2008. Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proc. Natl. Acad. Sci. USA 105:1551–1555.

    Article  PubMed  Google Scholar 

  • Laothawornkitkul, J., Taylor, J. E., Paul, N. D., and Hewitt, C. N. 2009. Biogenic volatile organic compounds in the Earth system. New Phytol. 183:27–51.

    Article  PubMed  CAS  Google Scholar 

  • Laurence, W. F., and Peres, C. A. 2006. Emerging Threats to Tropical Forests. University of Chicago Press, Chicago.

    Google Scholar 

  • Lavola, A., and Julkunen-Tiitto, R. 1994. The effect of elevated carbon dioxide and fertilization on primary and secondary metabolites in birch, Betula pendula (Roth). Oecologia 99:315–321.

    Article  Google Scholar 

  • Lawler, I. R., Foley, W. J., Woodrow, I. E., and Cork, S. J. 1997. The effects of elevated CO2 on the nutritional quality of Eucalyptus foliage and its interaction with soil nutrient and light availability. Oecologia 109:59–68.

    Article  Google Scholar 

  • Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., and Ort, D. R. 2009. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J. Exp. Bot. 60:2859–2876.

    Article  PubMed  CAS  Google Scholar 

  • Lerdau, M., and Gray, D. 2003. Ecology and evolution of light-dependent and light-independent phytogenic volatile organic carbon. New Phytol. 157:199–211.

    Article  CAS  Google Scholar 

  • Lindroth, R. L., and Dearing, M. D. 2005. Herbivory in a world of elevated CO2, pp. 468–486, in J. R. Ehleringer, T. E. Cerling, and M. D. Dearing (eds.). A History of Atmospheric CO2 and Its Effect on Plants, Animals, and Ecosystems. Springer Science, Inc, New York.

    Chapter  Google Scholar 

  • Lindroth, R. L., and Kinney, K. K. 1998. Consequences of enriched atmospheric CO2 and defoliation for foliar chemistry and gypsy moth performance. J. Chem. Ecol. 24:1677–1695.

    Article  CAS  Google Scholar 

  • Lindroth, R. L., Reich, P. B., Tjoelker, M. G., Volin, J. C., and Oleksyn, J. 1993a. Light environment alters response to ozone stress in Acer saccharum Marsh. and hybrid Populus L. seedlings. III. Consequences for gypsy moth performance. New Phytol. 124:647–651.

    Article  CAS  Google Scholar 

  • Lindroth, R. L., Jung, S. M., and Feuker, A. M. 1993b. Detoxication activity in the gypsy moth: effects of host CO2 and NO 3 availability. J. Chem. Ecol. 19:357–367.

    Article  CAS  Google Scholar 

  • Lindroth, R. L., Roth, S., Kruger, E. L., Volin, J. C., and Koss, P. A. 1997. CO2-mediated changes in aspen chemistry: effects on gypsy moth performance and susceptibility to virus. Glob. Chang. Biol. 3:279–289.

    Article  Google Scholar 

  • Lindroth, R. L., Roth, S., and Nordheim, E. V. 2001. Genotypic variation in response of quaking aspen (Populus tremuloides) to atmospheric CO2 enrichment. Oecologia 126:371–379.

    Article  Google Scholar 

  • Lindroth, R. L., Wood, S. A., and Kopper, B. J. 2002. Response of quaking aspen genotypes to enriched CO2: foliar chemistry and tussock moth performance. Agric. For. Entomol. 4:315–323.

    Article  Google Scholar 

  • Litvak, M. E., Madronich, S., and Monson, R. K. 1999. Herbivore-induced monoterpene emissions from coniferous forests: potential impact on local tropospheric chemistry. Ecol. Appl. 9:1147–1159.

    Article  Google Scholar 

  • Liu, L. L., King, J. S., and Giardina, C. P. 2005. Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Tree Physiol. 25:1511–1522.

    PubMed  CAS  Google Scholar 

  • Liu, L., King, J. S., and Giardina, C. P. 2007. Effects of elevated atmospheric CO2 and tropospheric O3 on nutrient dynamics: decomposition of leaf litter in trembling aspen and paper birch communities. Plant Soil 299:65–82.

    Article  CAS  Google Scholar 

  • Liu, L. L., King, J. S., Giardina, C. P., and Booker, F. L. 2009. The influence of chemistry, production and community composition on leaf litter decomposition under elevated atmospheric CO2 and tropospheric O3 in a northern hardwood ecosystem. Ecosystems 12:401–416.

    Article  CAS  Google Scholar 

  • Long, S. P., Ainsworth, E. A., Rogers, A., and Ort, D. R. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annu. Rev. Plant Biol. 55:591–628.

    Article  PubMed  CAS  Google Scholar 

  • Loranger, G. I., Pregitzer, K. S., and King, J. S. 2004. Elevated CO2 and O3t concentrations differentially affect selected groups of the fauna in temperate forest soils. Soil Biol. Biochem. 36:1521–1524.

    Article  CAS  Google Scholar 

  • Loya, W. M., Pregitzer, K. S., Karberg, N. J., King, J. S., and Giardina, C. P. 2003. Reduction of soil carbon formation by tropospheric ozone under increased carbon dioxide levels. Nature 425:705–707.

    Article  PubMed  CAS  Google Scholar 

  • Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A., Hartwig, U., Hungate, B., Mcmurtrie, R. E., Oren, R., Parton, W. J., Pataki, D. E., Shaw, M. R., Zak, D. R., and Field, C. B. 2004. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739.

    Article  Google Scholar 

  • Mattson, W. J., Kuokkanen, K., Niemelä, P., Julkunen-Tiitto, R., Kellomäki, S., and Tahvanainen, J. 2004. Elevated CO2 alters birch resistance to Lagomorpha herbivores. Glob. Chang. Biol. 10:1402–1413.

    Article  Google Scholar 

  • Mcdonald, E. P., Agrell, J., and Lindroth, R. L. 1999. CO2 and light effects on deciduous trees: growth, foliar chemistry, and insect performance. Oecologia 119:389–399.

    Google Scholar 

  • Mcguire, A. D., Melillo, J. M., and Joyce, L. A. 1995. The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide. Annu. Rev. Ecol. Syst. 26:473–503.

    Article  Google Scholar 

  • Millenium Ecosystem Assessment. 2005. Ecosystems and Human Well-Being: Biodiversity Synthesis. World Resources Institute, Washington

    Google Scholar 

  • Mondor, E. B., Tremblay, M. N., Awmack, C. S., and Lindorth, R. L. 2004. Divergent pheromone-mediated insect behaviour under global atmospheric change. Glob. Chang. Biol. 10:1820–1824.

    Article  Google Scholar 

  • Monson, R. K. 2003. The many faces of plant carbon relations: forging an ecophysiological identity in the age of human influence. New Phytol. 157:167–173.

    Article  Google Scholar 

  • Norby, R. J., Cotrufo, M. F., Ineson, P., O’neill, E. G., and Canadell, J. G. 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165.

    Article  Google Scholar 

  • Norby, R. J., Delucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P., King, J. S., Ledford, J., Mccarthy, H. R., Moore, D. J. P., Ceulemans, R., De Angelis, P., Finzi, A. C., Karnosky, D. F., Kubiske, M. E., Lukac, M., Pregitzer, K. S., Scarascia-Mugnozza, G. E., Schlesinger, W. H., and Oren, R. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. USA 102:18052–18056.

    Article  PubMed  CAS  Google Scholar 

  • Nykänen, H., and Koricheva, J. 2004. Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis. Oikos 104:247–268.

    Article  Google Scholar 

  • Oksanen, E., Riikonen, J., Kaakinen, S., Holopainen, T., and Vapaavuori, E. 2005. Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Glob. Chang. Biol. 11:732–748.

    Article  Google Scholar 

  • Ollinger, S. V., Aber, J. D., and Reich, P. B. 1997. Simulating ozone effects on forest productivity: interactions among leaf-, canopy-, and stand-level processes. Ecol. Appl. 7:1237–1251.

    Article  Google Scholar 

  • Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Syst. 37:637–669.

    Article  Google Scholar 

  • Parsons, W. F. J., Lindroth, R. L., and Bockheim, J. G. 2004. Decomposition of Betula papyrifera leaf litter under the independent and interactive effects of elevated CO2 and O3. Glob. Chang. Biol. 10:1666–1677.

    Article  Google Scholar 

  • Parsons, W. F. J., Bockheim, J. G., and Lindroth, R. L. 2008. Independent, interactive, and species-specific responses of leaf litter decomposition to elevated CO2 and O3 in a northern hardwood forest. Ecosystems 11:505–519.

    Article  CAS  Google Scholar 

  • Pearson, P. N., and Palmer, M. R. 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406:695–699.

    Article  PubMed  CAS  Google Scholar 

  • Pelini, S. L., Prior, K. M., Parker, D. J., Dzurisin, J. D. K., Lindroth, R. L., and Hellmann, J. J. 2009. Climate change and temporal and spatial mismatches in insect communites, pp. 215–231, in Letcher, T. M., (ed.) Climate Change: Observed Impacts on Planet Earth. Elsevier, Oxford.

    Google Scholar 

  • Peltonen, P. A., Vapaavuori, E., and Julkunen-Tiitto, R. 2005. Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biol. 11:1305–1324.

    Article  Google Scholar 

  • Peltonen, P. A., Julkunen-Tiitto, R., Vapaavuori, E., and Holopainen, J. K. 2006. Effects of elevated carbon dioxide and ozone on aphid oviposition preference and birch bud exudate phenolics. Glob. Chang. Biol. 12:1670–1679.

    Article  Google Scholar 

  • Peñuelas, J., and Estiarte, M. 1998. Can elevated CO2 affect secondary metabolism and ecosystem function? Trends Ecol. Evol. 13:20–24.

    Article  Google Scholar 

  • Peñuelas, J., Estiarte, M., and Llusià, J. 1997. Carbon-based secondary compounds at elevated CO2. Photosynthetica 33:313–316.

    Article  Google Scholar 

  • Percy, K. E., Awmack, C. S., Lindroth, R. L., Kubiske, M. E., Kopper, B. J., Isebrands, J. G., Pregitzer, K. S., Hendrey, G. R., Dickson, R. E., Zak, D. R., Oksanen, E., Sober, J., Harrington, R., and Karnosky, D. F. 2002. Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 420:403–407.

    Article  PubMed  CAS  Google Scholar 

  • Percy, K. E., Sirkku, M., Karl-Heinz, H., Heerdt, C., Werner, H., Henderson, G. W., Rainer M. 2009. Effect of 3 years’ free-air exposure to elevated ozone on mature Norway spruce (Picea abies (L.) Karst.) needle epicuticular wax physicochemical characteristics. Environ. Pollut. 157:1657–1665.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, D. M., Blande, J. D., Souza, S. R., Nerg, A.-M., Holopainen, J. K. 2010. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J. Chem. Ecol. — this issue.

  • Raffa, K. F., Aukema, B. H., Bentz, B. J., Carroll, A. L., Hicke, J. A., Turner, M. G., and Romme, W. H. 2008. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58:501–517

    Article  Google Scholar 

  • Rossi, A. M., Stiling, P., Moon, D. C., Cattell, M. V., and Drake, B. G. 2004. Induced defensive response of myrtle oak to foliar insect herbivory in ambient and elevated CO2. J. Chem. Ecol. 30:1143–1152.

    Article  PubMed  CAS  Google Scholar 

  • Roth, S. K., and Lindroth, R. L. 1995. Elevated atmospheric CO2: effects on phytochemistry, insect performance and insect-parasitoid interactions. Glob. Chang. Biol. 1:173–182.

    Article  Google Scholar 

  • Roth, S., Mcdonald, E. P., and Lindroth, R. L. 1997. Atmospheric CO2 and soil water availability: consequences for tree-insect interactions. Can. J. For. Res. 27:1281–1290.

    Google Scholar 

  • Roth, S., Lindroth, R. L., Volin, J. C., and Kruger, E. L. 1998. Enriched atmospheric CO2 and defoliation: effects on tree chemistry and insect performance. Glob. Chang. Biol. 4:419–430.

    Article  Google Scholar 

  • Sager, E. P., Hutchinson, T. C., Croley, T. R. 2005. Foliar phenolics in sugar maple (Acer saccharum) as a potential indicator of tropospheric ozone pollution. Environ. Monit. Assess. 105:419–430.

    Article  PubMed  CAS  Google Scholar 

  • Sallas, L., Kainulainen, P., Utriainen, J., Holopainen, T., and Holopainen, J. K. 2001. The influence of elevated O3 and CO2 concentrations on secondary metabolites of Scots pine (Pinus sylvestris L.) seedlings. Glob. Chang. Biol. 7:303–311.

    Article  Google Scholar 

  • Saxe, H., Ellsworth, D. S., and Heath, J. 1998. Tree and forest functioning in an enriched CO2 atmosphere. New Phytol. 139:395–436.

    Article  Google Scholar 

  • Scherzer, A. J., Rebbeck, J., and Boerner, R. E. J. 1998. Foliar nitrogen dynamics and decomposition of yellow-poplar and eastern white pine during four seasons of exposure to elevated ozone and carbon dioxide. For. Ecol. Manag. 109:355–366.

    Article  Google Scholar 

  • Sharkey, T. D., and Lerdau, M. T. 1999. Atmospheric chemistry and hydrocarbon emissions from plants. Ecol. Appl. 9:1107–1108.

    Article  Google Scholar 

  • Sitch, S., Cox, P. M., Collins, W. J., and Huntingford, C. 2007. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448:791–794.

    Article  PubMed  CAS  Google Scholar 

  • Skärby, L., Ro-Poulsen, H., Wellburn, F. A. M., and Sheppard, L. J. 1998. Impacts of ozone on forests: a European perspective. New Phytol. 139:109–122.

    Article  Google Scholar 

  • Stange, G. 1997. Effects of changes in atmospheric carbon dioxide on the location of hosts by the moth, Cactoblastis cactorum. Oecologia 110:539–545.

    Article  Google Scholar 

  • Stiling, P., and Cornelissen, T. 2007. How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob. Chang. Biol. 13:1823–1842.

    Article  Google Scholar 

  • Stiling, P., Rossi, A. M., Hungate, B., Dijkstra, P., Hinkle, C. R., Knott, W. M. III, and Drake, B. 1999. Decreased leaf-miner abundance in elevated CO2: reduced leaf quality and increased parasitoid attack. Ecol. Appl. 9:240–244.

    PubMed  CAS  Google Scholar 

  • Stiling, P., Cattell, M., Moon, D. C., Rossi, A., Hungate, B. A., Hymus, G., and Drake, B. 2002. Elevated atmospheric CO2 lowers herbivore abundance, but increases leaf abscission rates. Glob. Chang. Biol. 8:658–667.

    Article  Google Scholar 

  • Stiling, P., Moon, D. C., Hunter, M. D., Colson, J., Rossi, A. M., Hymus, G. J., and Drake, B. G. 2003. Elevated CO2 lowers relative and absolute herbivore density across all species of a scrub-oak forest. Oecologia 134:82–87.

    Article  PubMed  Google Scholar 

  • Stiling, P., Moon, D., Rossi, A., Hungate B. A., and Drake, B. 2009. Seeing the forest for the trees: long-term exposure to elevated CO2 increases some herbivore densities. Glob. Chang. Biol. 15:1895–1902.

    Article  Google Scholar 

  • STRAIN, B. R., and BAZZAZ, F. A. 1983. Terrestrial plant communities, pp. 177–222, in E. R. Lemon (ed.). CO2 and Plants. The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide. Westview Press, Inc., Boulder, CO.

    Google Scholar 

  • Strong, D. R., Lawton, J. H., and Southwood, R. 1984. Insects on Plants. Harvard University Press, Cambridge.

    Google Scholar 

  • Swift, M. J., Heal, O. W., and Anderson, J. M. 1979. Decomposition in Terrestrial Ecosystems. Blackwell Publications, Oxford, England.

    Google Scholar 

  • Taiz L, Zeiger E (2002) Plant Physiology, 3rd ed. Sinauer Associates, Sunderland.

    Google Scholar 

  • Traw, M. B., Lindroth, R. L., and Bazzaz, F. A. 1996. Decline in gypsy moth (Lymantria dispar) performance in an elevated CO2 atmosphere depends upon host plant species. Oecologia 108:113–120.

    Article  Google Scholar 

  • Tylianakis, J. M., Didham, R. K., Bascompte, J., and Wardle, D. A. 2008. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11:1351–1363.

    Article  PubMed  Google Scholar 

  • Valkama, E., Koricheva, J., and Oksanen, E. 2007. Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis. Glob. Chang. Biol. 13:184–201.

    Article  Google Scholar 

  • Van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, J. F., Fule, P. Z., Harmon, M. E., Larson, A. J., Smith, J. M., Taylor, A. H., and Veblen, T. T. 2009. Widespread increase of tree mortality rates in the western United States. Science 323:521–524.

    Article  PubMed  CAS  Google Scholar 

  • Veteli, T. O., Mattson, W. J., Niemelä, P., Julkunen-Tiitto, R., Kellomäki, S., Kuokkanen, K., and Lavola, A. 2007. Do elevated temperature and CO2 generally have counteracting effects on phenolic phytochemistry of boreal trees? J. Chem. Ecol. 33: 287–296.

    Article  PubMed  CAS  Google Scholar 

  • Vingarzan, R. 2004. A review of surface ozone background levels and trends. Atmos. Environ. 38:3431–3442.

    Article  CAS  Google Scholar 

  • Wennberg, P. O., and Dabdub, D. 2008. Rethinking ozone production. Science 319:1624–1625.

    Article  PubMed  CAS  Google Scholar 

  • Whitham, T. G., Bailey, J. K., Schweitzer, J. A., Shuster, S. M., Bangert, R. K., Leroy, C. J., Lonsdorf, E., Allan, G. J., Difazio, S. P., Potts, B. M., Fischer, D. G., Gehring, C. A., Lindroth, R. L., Marks, J., Hart, S. C., Wimp, G. M., and WOOLEY, S. C. 2006. A framework for community and ecosystem genetics: from genes to ecosystems. Nat. Rev., Genet. 7:510–523.

    Article  CAS  Google Scholar 

  • Wittig, V. E., Ainsworth, E. A., and Long, S. P. 2007. To what extent do current and projected increases in surface ozone affect photosynthesis and stomatal conductance of trees? A meta-analytic review of the last three decades of experiments. Plant Cell Environ. 30:1150–1162.

    Article  PubMed  CAS  Google Scholar 

  • Wittig, V. E., Ainsworth, E. A., Naidu, S. L., Karnosky, D. F., and Long, S. P. 2009. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Glob. Chang. Biol. 15:396–424.

    Article  Google Scholar 

  • Yuan, J. S., Himanen, S. J., Holopainen, J. K., Chen, F., and Stewart, C. N. 2009. Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol. Evol. 24:323–331.

    Article  PubMed  Google Scholar 

  • Zvereva, E. L., and Kozlov, M. V. 2006. Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a metaanalysis. Glob. Chang. Biol. 12:27–41.

    Article  Google Scholar 

Download references

Acknowledgments

Two decades of global change science by my research group have been generously supported by grants from the National Science Foundation, U.S. Department of Agriculture (National Research Initiatives) and the U.S. Department of Energy (Office of Science; currently, grant DE-FG02-06ER64232). Comments from two reviewers, including Stephan Hättenschwiler, improved the manuscript. I am deeply appreciative of the contributions of numerous undergraduate, graduate, postdoctoral and technical associates who have contributed to nearly 20 years of global change research in the Lindroth Lab, and grateful to the Source of grace that, like rain, falls on us all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Lindroth.

Additional information

Silverstein-Simeone Award Lecture, 2009

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindroth, R.L. Impacts of Elevated Atmospheric CO2 and O3 on Forests: Phytochemistry, Trophic Interactions, and Ecosystem Dynamics. J Chem Ecol 36, 2–21 (2010). https://doi.org/10.1007/s10886-009-9731-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9731-4

Keywords

Navigation