Skip to main content
Log in

Characterization of wheat-Secale africanum chromosome 5Ra derivatives carrying Secale specific genes for grain hardness

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

New wheat- Secale africanum chromosome 5R a substitution and translocation lines were developed and identified by fluorescence in situ hybridization and molecular markers, and chromosome 5R a specific genes responsible for grain hardness were isolated.

The wild species, Secale africanum Stapf. (genome RaRa), serves as a valuable germplasm resource for increasing the diversity of cultivated rye (S. cereale L., genome RR) and providing novel genes for wheat improvement. In the current study, fluorescence in situ hybridization (FISH) and molecular markers were applied to characterize new wheat–S. africanum chromosome 5Ra derivatives. Labeled rye genomic DNA (GISH) and the Oligo-probes pSc119.2 and pTa535 (FISH) were used to study a wheat–S. africanum amphiploid and a disomic 5Ra (5D) substitution, and to identify a T5DL.5RaS translocation line and 5RaS and 5RaL isotelosome lines. Twenty-one molecular markers were mapped to chromosome 5Ra arms which will facilitate future rapid identification of 5Ra introgressions in wheat backgrounds. Comparative analysis of the molecular markers mapped on 5Ra with homoeologous regions in wheat confirmed a deletion on the chromosome T5DL.5RaS, which suggests that the wheat–S. africanum Robertsonian translocation involving homologous group 5 may not be fully compensating. Complete coding sequences at the paralogous puroindoline-a (Pina) and grain softness protein gene (Gsp-1) loci from S. africanum were cloned and localized onto the short arm of chromosome 5Ra. The S. africanum chromosome 5Ra substitution and translocation lines showed a reduction in the hardness index, which may be associated with the S. africanum- specific Pina and Gsp-1 gene sequences. The present study reports the production of novel wheat–S. africanum chromosome 5Ra stripe rust resistant derivatives and new rye-specific molecular markers, which may find application in future use of wild Secale genome resources for grain quality studies and disease resistance breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482

    Article  CAS  PubMed  Google Scholar 

  • Bartos B (1993) Chromosome 1R of rye in wheat breeding. Plant Breed Abstr 63:1203–1211

    Google Scholar 

  • Bhave M, Morris CF (2008a) Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol 66:205–219

    Article  CAS  PubMed  Google Scholar 

  • Bhave M, Morris CF (2008b) Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Mol Biol 66:221–231

    Article  CAS  PubMed  Google Scholar 

  • Cuacos M, González-García M, González-Sánchez M, Puertas MJ, Vega JM (2011) Activation of rye 5RL neocentromere by an organophosphate pesticide. Cytogenet Genome Res 134(2):151–162

    Article  CAS  PubMed  Google Scholar 

  • Cuadrado A, Jouve N (2002) Evolutionary trends of different repetitive DNA sequences during speciation in the genus Secale. J Hered 93:339–345

    Article  CAS  PubMed  Google Scholar 

  • Devos KM, Atkinson MD, Chinoy CN, Francis HA, Harcourt RL, Koebner RMD, Liu CJ, Masojc P, Xie DX, Gale MD (1993) Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet 85:673–680

    Article  CAS  PubMed  Google Scholar 

  • Escobar JS, Scornavacca C, Cenci A, Guilhaumon C, Santoni S, Douzery EJ, Ranwez V, Glémin S, David J (2011) Multigenic phylogeny and analysis of tree incongruences in Triticeae (Poaceae). BMC Evol Biol 11:181

    Article  PubMed  PubMed Central  Google Scholar 

  • Fu S, Chen L, Wang Y, Li M, Yang Z, Qiu L, Yan B, Ren Z, Tang Z (2015) Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep 5:10552

    Article  PubMed  PubMed Central  Google Scholar 

  • Geng H, Beecher BS, He Z, Kiszonas AM, Morris CF (2012) Prevalence of puroindoline D1 and puroindoline b-2 variants in US Pacific Northwest wheat breeding germplasm pools, and their association with kernel texture. Theor Appl Genet 124:1259–1269

    Article  CAS  PubMed  Google Scholar 

  • Guzman C, Caballero L, Martin MA, Alvarez JB (2012) Molecular characterization and diversity of the Pina and Pinb genes in cultivated and wild diploid wheat. Mol Breed 30:69–78

    Article  CAS  Google Scholar 

  • Hammer K, Khoshbakht K (2005) Towards a ‘red list’ for crop plant species. Genet Resour Crop Evol 52:249–265

    Article  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T (2011) Organization of the plant genome in chromosomes. Plant J 66:18–33

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa G, Nakamura T, Ashida T, Saito M, Nasuda S, Endo T, Wu J, Matsumoto T (2009) Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet 118:499–514

    Article  CAS  PubMed  Google Scholar 

  • Jiang HR, Dai DQ, Sun DF (1992) Creation of special germplasm resources in Triticum. J Sichuan Agric Univ 10:255–259 (in Chinese)

    Google Scholar 

  • Khush GS, Stebbins GL (1961) Cytogenetic and evolutionary studies in Secale, I. Some new data on the ancestry of S. cereale. Am J Bot 48:723–730

    Article  Google Scholar 

  • Lei MP, Li GR, Zhang SF, Liu C, Yang ZJ (2011) Molecular cytogenetic characterization of a new wheat-Secale africanum 2Ra(2D) substitution line for resistant to stripe rust. J Genet 90:283–287

    Article  CAS  PubMed  Google Scholar 

  • Lei MP, Li GR, Liu C, Yang ZJ (2012) Characterization of new wheat-Secale africanum derivatives reveals evolutionary aspects of chromosome 1R in rye. Genome 55:765–774

    Article  CAS  PubMed  Google Scholar 

  • Lesage VS, Merlino M, Chambon C, Bouchet B, Marion D, Branlard G (2012) Proteomes of hard and soft near-isogenic wheat lines reveal that kernel hardness is related to the amplification of a stress response during endosperm development. J Exp Bot 63:1001–1011

    Article  CAS  PubMed  Google Scholar 

  • Li J, Endo TR, Saito M, Ishikawa G, Nakamura T, Nasuda S (2013) Homoeologous relationship of rye chromosome arms as detected with wheat PLUG markers. Chromosoma 122:555–564

    Article  CAS  PubMed  Google Scholar 

  • Linkiewicz AM, Qi LL, Gill BS, Ratnasiri A, Echalier B, Chao S, Lazo GR, Hummel DD, Anderson OD, Akhunov ED, Dvorák J, Pathan MS, Nguyen HT, Peng JH, Lapitan NL, Miftahudin Gustafson JP, La Rota CM, Sorrells ME, Hossain KG, Kalavacharla V, Kianian SF, Sandhu D, Bondareva SN, Gill KS, Conley EJ, Anderson JA, Fenton RD, Close TJ, McGuire PE, Qualset CO, Dubcovsky J (2004) A 2500-locus bin map of wheat homoeologous group 5 provides insights on gene distribution and colinearity with rice. Genetics 168:665–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GT, Peng YL, Chen WQ, Zhang ZY (2010) First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (= Yr26) present in wheat cultivar Chuanmai 42. Plant Dis 94:1163

    Article  Google Scholar 

  • Lukaszewski AJ, Gustafson JP (1987) Plant Breeding Reviews. In: Janick J (ed) Cytogenetics of triticale, vol 5. AVI Publishing, NewYork, pp 41–93

    Google Scholar 

  • Manzanero S, Puertas MJ, Jimenez G, Vega JM (2000) Neocentric activity of rye 5RL chromosome in wheat. Chromosom Res 8:543–554

    Article  CAS  Google Scholar 

  • Massa AN, Morris CF (2006) Molecular evolution of the puroindoline-a, puroindoline-b, and grain softness protein-1 genes in the tribe Triticeae. J Mol Evol 63:526–536

    Article  CAS  PubMed  Google Scholar 

  • Morris CF (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633–647

    Article  CAS  PubMed  Google Scholar 

  • Morris CF, Geng H, Beecher BS, Ma D (2013) A review of the occurrence of grain softness protein-1 genes in wheat (Triticum aestivum L.). Plant Mol Biol 83:507–521

    Article  CAS  PubMed  Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84:203

    Article  Google Scholar 

  • Qi L, Echalier B, Friebe B, Gill BS (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genom 3:39–55

    CAS  Google Scholar 

  • Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Charmet G, Salse J (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genom 9:473–484

    Article  CAS  Google Scholar 

  • Rabinovich SV (1998) Importance of wheat–rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica 100:323–340

    Article  Google Scholar 

  • Silkova OG, Leononva IN, Krasilova NM, Dubovets NI (2011) Preferential elimination of chromosome 5R of rye in the progeny of 5R5D dimonosomics. Genetika 47:1064–1072

    CAS  PubMed  Google Scholar 

  • Tang ZX, Ross K, Ren ZL, Yang ZJ, Zhang HY, Chikmawati T, Miftahudin, Gustafson JP (2011) Wild crop relatives: genomic and breeding resources cereals. In: Kole C (ed) Wealth of wild species: role in plant genome elucidation and improvement—Secale. Springer, Newyork, pp 367–395

    Google Scholar 

  • Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318

    Article  CAS  PubMed  Google Scholar 

  • Turnbull KM, Turner M, Mukai Y, Yamamoto M, Morell MK, Appels R, Rahman S (2003) The organization of genes tightly linked to the Ha locus in Aegilops tauschii, the D-genome donor to wheat. Genome 46:330–338

    Article  CAS  PubMed  Google Scholar 

  • Turner M, Mukai Y, Leroy P, Charef B, Appels R, Rahman S (1999) The Ha locus of wheat: identification of a polymorphic region for tracing grain hardness in crosses. Genome 42:1242–1250

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson MD, Castells-Brooke N, Shewry PR (2013) Diversity of sequences encoded by the Gsp-1 genes in wheat and other grass species. J Cereal Sci 57:1–9

    Article  CAS  Google Scholar 

  • Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    Article  CAS  PubMed  Google Scholar 

  • Yanaka M, Takata K, Terasawa Y, Ikeda TM (2011) Chromosome 5H of Hordeum species involved in reduction in grain hardness in wheat genetic background. Theor Appl Genet 123:1013–1018

    Article  PubMed  Google Scholar 

  • Yang ZJ, Li GR, Ren ZL (2000) Identification of amphiploid between Triticum durum cv. Ailanmai native to Sichuan, China and Secale africanum. Wheat Inf Serv 91:20–24

    Google Scholar 

  • Yang ZJ, Li GR, Ren ZL (2001) Identification of Triticum durumSecale africanum amphiploid and its crossability with common wheat. J Genet Breed 55:45–50

    Google Scholar 

  • Yang ZJ, Li GR, Feng J, Jiang HR, Ren ZL (2005) Molecular cytogenetic characterization and disease resistance observation of wheat-Dasypyrum breviaristatum partial amphiploid and its derivatives. Hereditas 142:80–85

    Article  PubMed  Google Scholar 

  • Yang ZJ, Li GR, Jia JQ, Zeng X, Lei MP, Zeng ZX, Zhang T, Ren ZL (2009) Molecular cytogenetic characterization of wheat-Secale africanum amphiploids and derived introgression lines with stripe rust resistance. Euphytica 167:197–202

    Article  Google Scholar 

  • Zhang RQ, Cao YP, Wang XE, Feng YG, Chen PD (2010) Development and characterization of a Triticum aestivumH. villosa T5VS·5DL translocation line with soft grain texture. J Cereal Sci 51(2):220–225

    Article  CAS  Google Scholar 

  • Zhang R, Wang X, Chen P (2012) Molecular and cytogenetic characterization of a small alien-segment translocation line carrying the softness genes of Haynaldia villosa. Genome 55:1–8

    Article  Google Scholar 

  • Zhou JP, Yang ZJ, Li GR, Liu C, Tang ZX, Zhang Y, Ren ZL (2010) Diversified chromosomal distribution of tandemly repeated sequences revealed evolutionary trends in Secale (Poaceae). Plant Syst Evol 287:49–56

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We particularly thank Dr. I. Dundas at University of Adelaide, Australia, and Dr. Niaz Ali at Hazara University, Pakistan for reviewing the manuscript. We are thankful to the National Natural Science Foundation of China (No. 31171542, 31101143 and 30871518) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zujun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Gao, D., La, S. et al. Characterization of wheat-Secale africanum chromosome 5Ra derivatives carrying Secale specific genes for grain hardness. Planta 243, 1203–1212 (2016). https://doi.org/10.1007/s00425-016-2472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-016-2472-z

Keywords

Navigation