Skip to main content
Log in

Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses

  • Review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The hardness or texture of cereal grains is a primary determinant of their technological and processing quality. Among members of the Triticeae, most notably wheat, much of the variation in texture is controlled by a single locus comprised of the Puroindoline a, Puroindoline b and Grain Softness Protein-1 (Gsp-1) genes. Puroindolines confer the three major texture classes of soft and hard common wheat and the very hard durum wheat. The protein products of these genes interact with lipids and are associated with the surface of isolated starch (as a protein fraction known as ‘friabilin’). During the past ten years a great diversity of alleles of both Puroindoline genes have been discovered and significant advances made in understanding the relationship between the gene presence/absence, sequence polymorphism and texture of cereal grains. Efforts have also focussed on Puroindoline and Gsp-1 genes in diploid progenitors, other Triticeae grasses and synthetic wheats in order to understand the evolution of this gene family and find potentially useful variants. The puroindoline homologues in other cereals such as rye and barley are also receiving attention. This work summarises new developments in molecular genetics of puroindolines in wheat and related Triticeae grasses, and the related genes in other cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GSP:

Grain softness protein

INDEL:

Insertions/deletions

nt:

Nucleotide

ORF:

Open reading frame

SNP:

Single nucleotide polymorphism

TRD:

Tryptophan-rich domain

References

  • Beecher B, Smidansky E, See D et al (2001) Mapping and analysis of hordoindolines. Theor Appl Genet 102:833–840

    Article  CAS  Google Scholar 

  • Beecher B, Bowman J, Martin JM et al (2002) Hordoindolines are associated with a major endosperm texture QTL in barley (Hordeum vulgare). Genome 45:584–591

    Article  PubMed  CAS  Google Scholar 

  • Bhave M, Morris CF (2007) Molecular genetics of puroindolines and related genes: regulation of expression, membrane binding properties and applications. Plant Mol Biol. doi:10.1007/s11103-007-9264-6

    Google Scholar 

  • Blochet JE, Chevalier C, Forest E et al (1993) Complete amino acid sequence of puroindoline, a new basic cysteine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by Triton X-114 phase partitioning. FEBS Lett 329:336–340

    Article  PubMed  CAS  Google Scholar 

  • Branlard G, Amiour N, Gaborit T et al (2003) Diversity of puroindolines as revealed by two-dimensional electrophoresis. Proteomics 3:168–174

    Article  PubMed  CAS  Google Scholar 

  • Budak H, Baenziger PS, Beecher BS et al (2004) The effect of introgressions of wheat D genome chromosomes into ‘Presto’ triticale. Euphytica 137:261–270

    Article  CAS  Google Scholar 

  • Caldwell KS, Langridge P, Powell W (2004) Comparative sequence analysis of the region harbouring the Hardness locus in barley and its co-linear region in rice. Plant Physiol 136:3177–3190

    Article  PubMed  CAS  Google Scholar 

  • Cane K, Spackman M, Eagles H (2004) Puroindoline genes and their effects on grain quality traits in southern Australian wheat cultivars. Aus J Agric Res 55:89–95

    Article  CAS  Google Scholar 

  • Chang C, Zhang H, Xu J et al (2006) Identification of allelic variations of puroindoline genes controlling grain hardness in wheat using a modified denaturing PAGE. Euphytica 152:225–234

    Article  CAS  Google Scholar 

  • Chantret N, Salse J, Sabot F et al (2005) Molecular basis of evolutionary events that shaped the Hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17:1033–1045

    Article  PubMed  CAS  Google Scholar 

  • Chen F, He Z, Xia X et al (2005a) A new puroindoline-b mutation present in Chinese winter wheat cultivar Jingdong 11. J Cereal Sci 42:267–269

    Article  CAS  Google Scholar 

  • Chen M, Wilkinson M, Tosi P et al (2005b) Novel puroindoline and grain softness protein alleles in Aegilops species with the C, D, S, M and U genomes. Theor Appl Genet 111:1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Chen F, He Z, Xia X et al (2006) Molecular and biochemical characterisation of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theor Appl Genet 112:400–409

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Yu Y, Xia X et al (2007) Prevalence of a novel puroindoline b allele in Yunnan endemic wheats (Triticum aestivum ssp. yunnanense King). Euphytica 156:39–46

    Article  CAS  Google Scholar 

  • Corona V, Gazza L, Boggini G et al (2001) Variation in friabilin composition as determined by A-PAGE fractionation and PCR amplification, and its relationship to grain hardness in bread wheat. J Cereal Sci 34:243–250

    Article  CAS  Google Scholar 

  • Darlington HF, Tecsi L, Harris N et al (2000) Starch granule associated proteins in barley and wheat. J Cereal Sci 32:21–29

    Article  CAS  Google Scholar 

  • Darlington HF, Rouster J, Hoffman L et al (2001) Identification and molecular characterisation of hordoindolines from barley grain. Plant Mol Biol 47:785–794

    Article  PubMed  CAS  Google Scholar 

  • Day L, Bhandari D, Greenwell P et al (2006) Characterisation of wheat puroindoline proteins. FEBS J 273:5358–5373

    Article  PubMed  CAS  Google Scholar 

  • Dubriel L, Méliande S, Chiron H et al (1998) Effect of puroindolines on the bread making properties of wheat flour. Cereal Chem 75:222–229

    Article  Google Scholar 

  • Eagles HA, Cane K, Eastwood RF et al (2006) Contributions of glutenin and puroindoline genes to grain quality traits in southern Australian wheat breeding programs. Aus J Agric Res 57:179–186

    Article  CAS  Google Scholar 

  • Fox GP, Osborne B, Bowman J et al (2007) Measurement of genetic and environmental variation in barley (Hordeum vulgare) grain hardness. J Cereal Sci 46:82–92

    Article  CAS  Google Scholar 

  • Gautier MF, Aleman ME, Guirao A et al (1994) Triticum aestivum puroindolines, two basic cysteine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol Biol 25:43–57

    Article  PubMed  CAS  Google Scholar 

  • Gautier MF, Cosson P, Guirao A et al (2000) Puroindoline genes are highly conserved in diploid ancestor wheats and related species but absent in tetraploid Triticum species. Plant Sci 153:81–91

    Article  CAS  Google Scholar 

  • Gazza L, Niglio A, Vaccino P et al (2003) The long arm of chromosome 5D of bread wheat contains a Pina-D1a-like sequence. In: Pogna NE, Romano M, Pogna E, Galterio G (eds) Proceedings of the 10th international wheat genetics symposium, vol 3. Paestum, Italy, pp 1330–1332

  • Gazza L, Nocente F, Ng PKW et al (2005) Genetic and biochemical analysis of common wheat cultivars lacking puroindoline a. Theor Appl Genet 110:470–478

    Article  PubMed  CAS  Google Scholar 

  • Gazza L, Taddei F, Corbellini M et al (2007) Genetic and environmental factors affecting grain texture in common wheat. J Cereal Sci. doi:10.1016/j.jcs.2007.01.004

    Google Scholar 

  • Gedye KR, Morris CF, Bettge AD (2004) Determination and evaluation of the sequence and textural effects of the puroindoline a and puroindoline b genes in a population of synthetic hexaploid wheat. Theor Appl Genet 109:1597–1603

    Article  PubMed  CAS  Google Scholar 

  • Giroux MJ, Morris CF (1997) A glycine to serine change in puroindoline-b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor Appl Genet 95:857–864

    Article  CAS  Google Scholar 

  • Giroux MJ, Morris CF (1998) Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline-a and -b. Proc Natl Acad Sci USA 95:6262–6266

    Article  PubMed  CAS  Google Scholar 

  • Giroux MJ, Talbert L, Habernicht DK et al (2000) Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci 30:370–374

    Article  Google Scholar 

  • Gollan P, Smith K, Bhave M (2007) Gsp-1 genes comprise a multigene family in wheat that exhibits a unique combination of sequence diversity yet conservation. J Cereal Sci 45:184–198

    Article  CAS  Google Scholar 

  • Igrejas G, Gabroit T, Oury FX, Chiron H, Marion D, Branlard G (2001) Genetic and environmental effects on puroindoline-a and puroindoline-b content and their relationship to technical properties in French bread wheats. J Cereal Sci 34:37–47

    Article  CAS  Google Scholar 

  • Igrejas G, Leroy P, Charmet G et al (2002) Mapping QTLs for grain hardness and puroindoline content in wheat (Triticum aestivum L.). Theor Appl Genet 106:19–27

    PubMed  CAS  Google Scholar 

  • Ikeda TM, Ohnishi N, Nagamine T et al (2005) Identification of new puroindoline genotypes and their relationship to flour texture among wheat cultivars. J Cereal Sci 41:1–6

    Article  CAS  Google Scholar 

  • Jolly CJ, Rahman S, Kortt AA et al (1993) Characterisation of the wheat Mr 15,000 ‘grain-softness protein’ and analysis of the relationship between its accumulation and the whole seed and grain softness. Theor Appl Genet 86:589–597

    Article  CAS  Google Scholar 

  • Jolly CJ, Glenn GM, Rahman S (1996) Gsp-1 genes are linked to the grain hardness locus (Ha) on wheat chromosome 5D. Proc Natl Acad Sci USA 93:2408–2413

    Article  PubMed  CAS  Google Scholar 

  • Kan Y, Wan Y, Beaudoin F et al (2006) Transcriptome analysis reveals differentially expressed storage protein transcripts in seeds of Aegilops and wheat. J Cereal Sci 44:75–85

    Article  CAS  Google Scholar 

  • Kooijman M, Orsel R, Hessing M et al (1997) Spectroscopic characterisation of the lipid-binding properties of wheat puroindolines. J Cereal Sci 26:145–159

    Article  CAS  Google Scholar 

  • Li G, He Z, Pena RJ et al (2006) Identification of novel secaloindoline-a and secaloindoline-b alleles in CIMMYT hexaploid triticale lines. J Cereal Sci 43:378–386

    Article  CAS  Google Scholar 

  • Li G, He Z, Lillemo M et al (2007) Molecular characterization of allelic variations at Pina and Pinb loci in Shandong wheat landraces, historical and current cultivars. J Cereal Sci (in press) doi:10.1016/j.jcs.2007.06.003

  • Lillemo M, Morris CF (2000) A leucine to proline mutation in puroindoline b is frequently present in hard wheats from Northern Europe. Theor Appl Genet 100:1100–1107

    Article  CAS  Google Scholar 

  • Lillemo M, Simeone MC, Morris CF (2002) Analysis of puroindoline a and b sequences from Triticum aestivum cv. ‘Penawawa’ and related taxa. Euphytica 126:321–331

    Article  CAS  Google Scholar 

  • Lillemo M, Chen F, Xia X et al (2006) Puroindoline grain hardness alleles in CIMMYT bread wheat germplasm. J Cereal Sci 44:86–92

    Article  CAS  Google Scholar 

  • Marion D, Gautier MF, Joudrier P et al (1994) Structure and function of wheat lipid binding proteins. In: Wheat kernel proteins: molecular and functional aspects, Proc Int’l Mtg, Universita Degli Sudi della Tuscia, Viterbo, pp 175–180

  • Martin JM, Frohberg RC, Morris CF et al (2001) Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci 41:228–234

    Article  CAS  Google Scholar 

  • Massa AN, Morris CF, Gill BS (2004) Sequence diversity of puoindoline-a, puoindoline-b and the grain softness protein genes in Aegilops tauschii Coss. Crop Sci 44:1808–1816

    Article  CAS  Google Scholar 

  • McIntosh RA, Devos KM, Dubcovsky J et al (2004) Catalogue of gene symbols for wheat: 2004 supplement. http://www.grain.jouy.inra.fr/ggpages/wgc/2004upd.html

  • McIntosh RA, Devos KM, Dubcovsky J et al (2005) Catalogue of gene symbols for wheat: 2005 supplement. http://grain.jouy.inra.fr/ggpages/wgc/2005upd.html

  • McIntosh RA, Devos KM, Dubcovsky J et al (2006) Catalogue of gene symbols for wheat: 2006 supplement. http://www.grain.jouy.inra.fr/ggpages/wgc/2006upd.html

  • McIntosh RA, Devos KM, Dubcovsky J et al (2007) Catalogue of gene symbols for wheat: 2007 supplement. http://www.grain.jouy.inra.fr/ggpages/awn/53/Textfile/WGC.html

  • Morris CF (2002) Puroindolines: the molecular genetic basis of wheat grain hardness. Plant Mol Biol 48:633–647

    Article  PubMed  CAS  Google Scholar 

  • Morris CF, Bhave M (2007) Reconciliation of D-genome puroindoline allele designations with current DNA sequence data. J Cereal Sci (in press)

  • Morris CF, King GE (2007) Registration of hard kernel puroindoline allele near-isogenic line hexaploid wheat genetic stocks. J Plant Reg (in press)

  • Morris CF, Greenblatt GA, Bettge AD et al (1994) Isolation and characterisation of multiple forms of friabilin. J Cereal Sci 21:167–174

    Article  Google Scholar 

  • Morris CF, Lillemo M, Simeone MC et al (2001a) Prevalence of puroindoline grain hardness genotypes among historically significant North American spring and winter wheats. Crop Sci 41:218–228

    Article  CAS  Google Scholar 

  • Morris CF, Simeone MC, Gill BS et al (2001b) Comparison of puroindoline sequences from various diploid members of the Triticeae and modern cultivated hexaploid wheats. In: Wootton M, Batey LL, Wrigley CW (eds) Proc 11th ICC cereal and bread congress and 50th Australian cereal chemistry conference, Queensland, pp 678–681

  • Morrison WR, Greenwell P, Law CN et al (1992) Occurrence of friabilin, a low molecular weight protein associated with grain softness, on starch granules isolated from some wheats and related species. J Cereal Sci 15:143–149

    Article  CAS  Google Scholar 

  • Pan Z, Song W, Meng F et al (2004) Characterization of genes encoding wheat grain hardness from Chinese cultivar Gaocheng 8901. Cereal Chem 82:38–43

    Google Scholar 

  • Pickering P, Bhave M (2007) Comprehensive analysis of Australian hard wheat cultivars shows limited puroindoline allele diversity. Plant Sci 172:371–379

    Article  CAS  Google Scholar 

  • Pogna NE, Gazza L, Boggini G et al (2002) Puroindoline and kernel hardness in Triticum aestivum and Triticum monococcum. Annual Wheat Newsletter. Experimental Institute for Cereal Research, Italy, p 60

  • Ram S, Jain N, Shoran J et al (2005) New frame shift mutation in Puroindoline-b in Indian wheat cultivars Hyb65 and NI5439. J Plant Biochem Biotech 14:45–48

    CAS  Google Scholar 

  • Ramirez A, Perez TG, Ribotta RP et al (2003) The occurrence of friabilins in triticale and their relationship with grain hardness and baking quality. J Agric Food Chem 51:7176–7181

    Article  PubMed  CAS  Google Scholar 

  • Rahman S, Jolly CJ, Skerritt JH et al (1994) Cloning of a wheat 15 kDa grain softness protein (GSP). GSP is a mixture of different puroindoline-like polypeptides. Eur J Biochem 223:917–925

    Article  PubMed  CAS  Google Scholar 

  • Simeone MC, Lafiandra D (2005) Isolation and characterization of friabilin genes in rye. J Cereal Sci 41:115–122

    Article  CAS  Google Scholar 

  • Simeone MC, Gedye KR, Mason-Gammer R et al (2006) Conserved regulatory elements identified from a comparative puroindoline gene sequence survey of Triticum and Aegilops diploid taxa. J Cereal Sci 44:21–33

    Article  CAS  Google Scholar 

  • Tanaka H, Morris CF, Haruna M et al (2007) Prevalence of puroindoline alleles in wheat from eastern Asia including discovery of a new SNP in puroindoline b. Plant Genet Resour (in review)

  • Tranquilli G, Lijavetzky D, Muzzi G et al (1999) Genetic and physical characterization of grain texture-related loci in diploid wheat. Mol Gen Genet 262:846–850

    Article  PubMed  CAS  Google Scholar 

  • Tranquilli G, Heaton J, Chicaiza O et al (2002) Substitutions and deletions of genes related to grain hardness and their effect on grain texture. Crop Sci 42:1812–1817

    Article  CAS  Google Scholar 

  • Turnbull KM, Turner M, Mukai Y et al (2003) The organization of genes tightly linked to the Ha locus in Aegilops tauschii, the D-genome donor to wheat. Genome 46:330–338

    Article  PubMed  CAS  Google Scholar 

  • Turner M, Mukai Y, Leroy P et al (1999) The Ha locus of wheat: identification of a polymorphic region for tracing grain hardness in crosses. Genome 42:1242–1250

    Article  PubMed  CAS  Google Scholar 

  • Van den Bulck K, Loosveld A, Courtin CM et al (2002) Amino acid sequence of wheat flour arabinogalactan peptide, identical to part of grain softness protein GSP-1, leads to improved structural model. Cereal Chem 79:329–331

    Article  Google Scholar 

  • Williams PC (1986) The influence of chromosome number and species on grain hardness. Cereal Chem 63:56–57

    Google Scholar 

  • Xia LQ, Chen F, He ZH et al (2005) Occurrence of puroindoline alleles in Chinese winter wheats. Cereal Chem 82:38–43

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewer for a thorough and critical review, which helped greatly with the revision of this manuscript. The assistance of Stacey Sykes in the preparation of this manuscript is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Bhave.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhave, M., Morris, C.F. Molecular genetics of puroindolines and related genes: allelic diversity in wheat and other grasses. Plant Mol Biol 66, 205–219 (2008). https://doi.org/10.1007/s11103-007-9263-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9263-7

Keywords

Navigation