Abdelkafi S, Sayadi S, Ben Ali Gam Z, Casalot L, Labat M (2006) Bioconversion of ferulic acid to vanillic acid by Halomonas elongata isolated from table-olive fermentation. FEMS Microbiol Lett 262:115–120
CAS
Article
Google Scholar
Alcock BP, Raphenya AR, Lau TTY, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen AV, Cheng AA, Liu S, Min SY, Miroshnichenko A, Tran HK, Werfalli RE, Nasir JA, Oloni M, Speicher DJ, Florescu A, Singh B, Faltyn M, Hernandez-Koutoucheva A, Sharma AN, Bordeleau E, Pawlowski AC, Zubyk HL, Dooley D, Griffiths E, Maguire F, Winsor GL, Beiko RG, Brinkman FSL, Hsiao WWL, Domselaar GV, McArthur AG (2020) CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 48:D517–D525. https://doi.org/10.1093/nar/gkz935
CAS
Article
PubMed
Google Scholar
Arnold R, Brandmaier S, Kleine F, Tischler P, Heinz E, Behrens S, Niinikoski A, Mewes HW, Horn M, Rattei T (2009) Sequence-based prediction of type III secreted proteins. PLoS Pathog 5(4):e1000376. https://doi.org/10.1371/journal.ppat.1000376
CAS
Article
PubMed
PubMed Central
Google Scholar
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556
CAS
Article
PubMed
PubMed Central
Google Scholar
Ashengroph M, Nahvi I, Zarkesh-Esfahani H, Momenbeik F (2012) Novel strain of Bacillus licheniformis SHL1 with potential converting ferulic acid into vanillic acid. Ann Microbiol 62:553–558
CAS
Article
Google Scholar
Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res 28:45–48. https://doi.org/10.1093/nar/28.1.45
CAS
Article
PubMed
PubMed Central
Google Scholar
Becker J, Wittmann C (2019) A field of dreams: lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 37:107360. https://doi.org/10.1016/j.biotechadv.2019.02.016
CAS
Article
PubMed
Google Scholar
Bej AK, Aislabie J, Atlas RM (eds) (2010) Polar microbiology. CRC Press, Boca Raton
Google Scholar
Berger T, Poyntner C, Margesin R (2021) Culturable bacteria from an Alpine coniferous forest site: biodegradation potential of organic polymers and pollutants. Folia Microbiol 66:87–98. https://doi.org/10.1007/s12223-020-00825-1
Brink DP, Ravi K, Lidén G, Gorwa-Grausland MF (2019) Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database. Appl Microbiol Biotechnol 103:3979–4002
CAS
Article
Google Scholar
Brunati M, Marinelli F, Bertolini C, Gandolfi R, Daffonchio D, Molinari F (2004) Biotransformations of cinnamic and ferulic acid with actinomycetes. Enzym Microb Technol 34:3–9
CAS
Article
Google Scholar
Bugg TDH, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Open Biotechnol 22:394–400
CAS
Article
Google Scholar
Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238. https://doi.org/10.1093/nar/gkn663
CAS
Article
PubMed
Google Scholar
Chen L, Xiong Z, Sun L, Yang J, Jin Q (2012) VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 40:641–645. https://doi.org/10.1093/nar/gkr989
CAS
Article
Google Scholar
Coenye T, Henry D, Speert DP, Vandamme P (2004) Burkholderia phenoliruptrix sp. nov., to accommodate the 2,4,5-trichlorophenoxyacetic acid and halophenol-degrading strain AC11100. Syst Appl Microbiol 27:623–627
Collins T, Margesin R (2019) Psychrophilic lifestyles: mechanisms of adaptation and biotechnological tools. Appl Microbiol Biotechnol 103:2857–2871. https://doi.org/10.1007/s00253-019-09659-C5
CAS
Article
PubMed
Google Scholar
De Maayer P, Anderson D, Cary C, Cowan DA (2014) Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep 15:508–517
Article
Google Scholar
El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi M, Richardson LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE, Finn RD (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432. https://doi.org/10.1093/nar/gky995
CAS
Article
PubMed
Google Scholar
França L, Sannino C, Turchetti B, Buzzini P, Margesin R (2016) Seasonal and altitudinal changes of culturable bacterial and yeast diversity in Alpine forest soils. Extremophiles 20:855–873. https://doi.org/10.1007/s00792-016-0874-2
Article
PubMed
PubMed Central
Google Scholar
Galperin MY, Makarova KS, Wolf YI, Koonin EV (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261–D269. https://doi.org/10.1093/nar/gku1223
CAS
Article
PubMed
Google Scholar
Ganewatta MS, Lokupitiya HN, Tang C (2019) Lignin biopolymers in the age of controlled polymerization. Polymers 11:1176. https://doi.org/10.3390/polym11071176
CAS
Article
PubMed Central
Google Scholar
Gasson MJ, Kitamura Y, McLauchlan WR, Narbad A, Parr AJ, Parsons EL, Payne J, Rhodes MJ, Walton NJ (1998) Metabolism of ferulic acid to vanillin. A bacterial gene of the enoyl-SCoA hydratase/isomerase superfamily encodes an enzyme for the hydration and cleavage of a hydroxycinnamic acid SCoA thioester. J Biol Chem 273(7):4163–4170. https://doi.org/10.1074/jbc.273.7.4163
CAS
Article
PubMed
Google Scholar
Ghosh S, Sachan A, Mitra A (2006) Formation of vanillic acid from ferulic acid by Paecilomyces variotii MTCC 6581. Curr Sci 90:825–829
CAS
Google Scholar
Ghosh S, Sachan A, Sen SK, Mitra A (2007) Microbial transformation of ferulic acid to vanillic acid by Streptomyces sannanensis MTCC 6637. J Ind Microbiol Biotechnol 34:131–138
CAS
Article
Google Scholar
Gitzinger M, Kemmer C, Fluri DA, El-Baba MD, Weber W, Fussenegger M (2012) The food additive vanillic acid controls transgene expression in mammalian cells and mice. Nucleic Acids Res 40:e37
CAS
Article
Google Scholar
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E (2017) Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: Update on bacterial lignin catabolism. Environ Microbiol Rep 9:679–705. https://doi.org/10.1111/1758-2229
CAS
Article
PubMed
Google Scholar
Kumar M, Verma S, Gazara RK, Kumar M, Pandey A, Verma PK, Thakur IS (2018) Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating β-proteobacterium Pandoraea sp. ISTKB. Biotechnol Biofuels 11:154. https://doi.org/10.1186/s13068-018-1148-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Lee Y, Jeon CO (2018) Paraburkholderia aromaticivorans sp. nov., an aromatic hydrocarbon-degrading bacterium, isolated from gasoline-contaminated soil. Int J Syst Evol Microbiol 68:1251–1257
Article
Google Scholar
Lee Y, Lee Y, Jeon CO (2019) Biodegradation of naphthalene, BTEX, and aliphatic hydrocarbons by Paraburkholderia aromaticivorans BN5 isolated from petroleum-contaminated soil. Sci Rep 9:860
Article
Google Scholar
Li JB, Zhang DY, Song MK, Jiang LF, Wang YJ, Luo CL, Zhang G (2017) Novel bacteria capable of degrading phenanthrene in activated sludge reveled by stable-isotope probing coupled with high-throughput sequencing. Biodegradation 28:423–436
CAS
Article
Google Scholar
Liu Z, Liu Y, Zeng G, Shao B, Chen M, Li Z, Jiang Y, Liu Y, Zhang Y, Zhong H (2018) Applications of molecular docking for the degradation of organic pollutants in the environmental remediation: a review. Chemosphere 203:139–150
CAS
Article
Google Scholar
Ľudmila H, Michal J, Andrea Š, Aleš H (2015) Lignin, potential products and their market value. Wood Res 60:973–986
Google Scholar
Margesin R (ed) (2017) Psychrophiles: from biodiversity to biotechnology, 2nd edn. Berlin, Springer
Google Scholar
Margesin R, Collins T (2019) Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biotechnol 103:2537–2549. https://doi.org/10.1007/s00253-019-09631-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Margesin R, Schinner F (1997) Bioremediation of diesel-oil contaminated alpine soils at low temperatures. Appl Microbiol Biotechnol 47:462–468
CAS
Article
Google Scholar
Margesin R, Moertelmaier C, Mair J (2013) Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int Biodeterior Biodegrad 84:185–191
CAS
Article
Google Scholar
Mishra S, Kullu M, Sachan A, Vidyarthy AS, Ghosh Sachan S (2016) Bioconversion of ferulic acid to vanillic acid by Paenibacillus lactis SAMS-2001. Ann Microbiol 66:875–882
CAS
Article
Google Scholar
Morya R, Kumar M, Singh SS, Thakur IS (2019) Genomic analysis of Burkholderia sp. ISTR5 for biofunneling of lignin-derived compounds. Biotechnol Biofuels 12:277
CAS
Article
Google Scholar
Muheim A, Lerch K (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 51:456–461
CAS
Article
Google Scholar
O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-White B, Ako-Adjei D, Astashyn A, Badretdin A, Bao Y, Blinkova O, Brover V, Chetvernin V, Choi J, Cox E, Ermolaeva O, Farrell CM, Goldfarb T, Gupta T, Haft D, Hatcher E, Hlavina W, Joardar VS, Kodali VK, Li W, Maglott D, Masterson P, McGarvey KM, Murphy MR, O'Neill K, Pujar S, Rangwala SH, Rausch D, Riddick LD, Schoch C, Shkeda A, Storz SS, Sun H, Thibaud-Nissen F, Tolstoy I, Tully RE, Vatsan AR, Wallin C, Webb D, Wu W, Landrum MJ, Kimchi A, Tatusova T, DiCuccio M, Kitts P, Murphy TD, Pruitt KD (2016) Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 44D1:D733–D745. https://doi.org/10.1093/nar/gkv1189
CAS
Article
Google Scholar
Palazzolo MA, Kurina-Sanz M (2016) Microbial utilization of lignin: available biotechnologies for its degradation and valorization. World J Microbiol Biotechnol 32:173
Article
Google Scholar
Paulitsch F, Fuzinatto Dall’Agnol R, Marçon Delamuta JR, Ribeiro RA, da Silva Batista JS, Hungria M (2020) Paraburkholderia atlantica sp. nov. and Paraburkholderia franconis sp. nov., two new nitrogen-fixing nodulating species isolated from Atlantic forest soils in Brazil. Arch Microbiol 202:1369–1380
CAS
Article
Google Scholar
Poyntner C, Zhang D, Margesin R (2020) Draft genome sequence of the bacterium Paraburkholderia aromaticivorans AR20-38, a Gram-negative, cold-adapted degrader of aromatic compounds. Microbiol Resour Announc 9e00463-20. https://doi.org/10.1128/MRA.00463-20
Ravi K, Garcia-Hidalgo J, Gorwa-Grausland MF, Lidén G (2017) Conversion of lignin model compounds by Pseudomonas putida KT2440 and isolates from compost. Appl Microbiol Biotechnol 101:5059–5070
Ravi K, Garcia-Hidalgo J, Nöbel M, Gorwa-Grausland MF, Lidén G (2018) Biological conversion of aromatic monolignol compounds by a Pseudomonas isolate from sediments of the Baltic Sea. AMB Express 8:32
Article
Google Scholar
Rosazza JPN, Huang Z, Dolstal L, Volm T, Rousseau B (1995) Review: biocatalytic transformations of ferulic acid: an abundant aromatic natural product. J Ind Microbiol 15:457–471
CAS
Article
Google Scholar
Saier MH, Reddy VS, Tamang DG, Västermark Å (2014) The transporter classification database. Nucleic Acids Res 42:251–258. https://doi.org/10.1093/nar/gkt1097
CAS
Article
Google Scholar
Schlegel HG (1992) Allgemeine Mikrobiologie, 7. Auflage edn. Georg Thieme Verlag, Stuttgart
Google Scholar
The Gene Ontology Consortium (2019) The Gene Ontology resource: 20 years and still GOing strong. Nucleic Acids Res 47:D330–D338. https://doi.org/10.1093/nar/gky1055
CAS
Article
Google Scholar
Tian J-H, Pourcher A-M, Bouchez T, Gelhaye E, Peu P (2014) Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl Microbiol Biotechnol 98:9527–9544
CAS
Article
Google Scholar
Tropel D, van der Meer JR (2004) Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 68(3):474–500. https://doi.org/10.1128/MMBR.68.3.474-500.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Upadhyay P, Singh NK, Tupe R, Odenath A, Lali A (2019) Biotransformation of corn bran derived ferulic acid to vanillic acid using engineered Pseudomonas putida KT2440. Prep Biochem Biotechnol 50:341–348
Article
Google Scholar
Urban M, Cuzick A, Seager J, Wood V, Rutherford K, Venkatesh SJ, De Silva N, Carbajo Martinez M, Pedro H, Yates AD, Hassani-Pak K, Zammond-Kosack KE (2020) PHI-base: the pathogen–host interactions database. Nucleic Acids Res 48:D613–D620. https://doi.org/10.1093/nar/gkz904
CAS
Article
PubMed
Google Scholar
Wang J, Liang J, Gao S (2018) Biodegradation of lignin monomers vanillic, p-coumaric, and syringic acid by the bacterial strain Sphingobacterium sp. HY-H. Curr Microbiol 75:1156–1164
CAS
Article
Google Scholar
Wilhelm RC, Murphy SJL, Feriancek NM, Karasz DC, DeRito CM, Newman JD, Buckley DH (2020) Paraburkholderia madseniana sp. nov., a phenolic acid-degrading bacterium isolated from acidic forest soil. Int J Syst Evol Microbiol 70:2137–2146
CAS
Article
Google Scholar
Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M, Hansen H, Rawlings C, Hammond-Kosack KE, Kohler J (2008) PHI-base update: additions to the pathogen host interaction database. Nucleic Acids Res 36:D572-D576
Xiao S-Y, Gao Z-H, Qiu L-H (2019) Paraburkholderia pallida sp. nov. and Paraburkholderia silviterrae sp. nov. isolated from forest soil. Int J Syst Evol Microbiol 69:3777–3785
CAS
Article
Google Scholar
Yuan XY, Zhang XY, Cen XP, Kong DW, Liu XY, Shen SY (2018) Synergistic degradation of crude oil by indigenous bacterial consortium and exogenous fungus Scedosporium boydii. Bioresour Technol 264:190–197
CAS
Article
Google Scholar