The double copy: Bremsstrahlung and accelerating black holes

Abstract

Advances in our understanding of perturbation theory suggest the existence of a correspondence between classical general relativity and Yang-Mills theory. A concrete example of this correspondence, which is known as the double copy, was recently intro-duced for the case of stationary Kerr-Schild spacetimes. Building on this foundation, we examine the simple time-dependent case of an accelerating, radiating point source. The gravitational solution, which generalises the Schwarzschild solution, includes a non-trivial stress-energy tensor. This stress-energy tensor corresponds to a gauge theoretic current in the double copy. We interpret both of these sources as representing the radiative part of the field. Furthermore, in the simple example of Bremsstrahlung, we determine a scattering amplitude describing the radiation, maintaining the double copy throughout. Our results provide the strongest evidence yet that the classical double copy is directly related to the BCJ double copy for scattering amplitudes.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    Z. Bern and A.K. Grant, Perturbative gravity from QCD amplitudes, Phys. Lett. B 457 (1999) 23 [hep-th/9904026] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. [4]

    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. [5]

    Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the Square of Gauge Theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal Basis for Gauge Theory Amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    S. Stieberger, Open and Closed vs. Pure Open String Disk Amplitudes, arXiv:0907.2211 [INSPIRE].

  8. [8]

    N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, Monodromy and Jacobi-like Relations for Color-Ordered Amplitudes, JHEP 06 (2010) 003 [arXiv:1003.2403] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    B. Feng, R. Huang and Y. Jia, Gauge Amplitude Identities by On-shell Recursion Relation in S-matrix Program, Phys. Lett. B 695 (2011) 350 [arXiv:1004.3417] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    S.H. Henry Tye and Y. Zhang, Dual Identities inside the Gluon and the Graviton Scattering Amplitudes, JHEP 06 (2010) 071 [Erratum ibid. 1104 (2011) 114] [arXiv:1003.1732] [INSPIRE].

  11. [11]

    C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ Numerators from Pure Spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. [12]

    R. Monteiro and D. O’Connell, The Kinematic Algebra From the Self-Dual Sector, JHEP 07 (2011) 007 [arXiv:1105.2565] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. [13]

    N.E.J. Bjerrum-Bohr, P.H. Damgaard, R. Monteiro and D. O’Connell, Algebras for Amplitudes, JHEP 06 (2012) 061 [arXiv:1203.0944] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. [14]

    Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 Supergravity as Limits of String Theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    Z. Bern, J.S. Rozowsky and B. Yan, Two loop four gluon amplitudes in N = 4 super Yang-Mills, Phys. Lett. B 401 (1997) 273 [hep-ph/9702424] [INSPIRE].

  17. [17]

    S. Oxburgh and C.D. White, BCJ duality and the double copy in the soft limit, JHEP 02 (2013) 127 [arXiv:1210.1110] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    J.J. Carrasco and H. Johansson, Five-Point Amplitudes in N = 4 super-Yang-Mills Theory and N = 8 Supergravity, Phys. Rev. D 85 (2012) 025006 [arXiv:1106.4711] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    J.J.M. Carrasco, M. Chiodaroli, M. Günaydin and R. Roiban, One-loop four-point amplitudes in pure and matter-coupled N ≤ 4 supergravity, JHEP 03 (2013) 056 [arXiv:1212.1146] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. [20]

    C.R. Mafra and O. Schlotterer, The Structure of n-Point One-Loop Open Superstring Amplitudes, JHEP 08 (2014) 099 [arXiv:1203.6215] [INSPIRE].

    ADS  Article  Google Scholar 

  21. [21]

    R.H. Boels, R.S. Isermann, R. Monteiro and D. O’Connell, Colour-Kinematics Duality for One-Loop Rational Amplitudes, JHEP 04 (2013) 107 [arXiv:1301.4165] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    N.E.J. Bjerrum-Bohr, T. Dennen, R. Monteiro and D. O’Connell, Integrand Oxidation and One-Loop Colour-Dual Numerators in N = 4 Gauge Theory, JHEP 07 (2013) 092 [arXiv:1303.2913] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    Z. Bern, S. Davies, T. Dennen, Y.-t. Huang and J. Nohle, Color-Kinematics Duality for Pure Yang-Mills and Gravity at One and Two Loops, Phys. Rev. D 92 (2015) 045041 [arXiv:1303.6605] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. [24]

    Z. Bern, S. Davies and T. Dennen, The Ultraviolet Structure of Half-Maximal Supergravity with Matter Multiplets at Two and Three Loops, Phys. Rev. D 88 (2013) 065007 [arXiv:1305.4876] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    J. Nohle, Color-Kinematics Duality in One-Loop Four-Gluon Amplitudes with Matter, Phys. Rev. D 90 (2014) 025020 [arXiv:1309.7416] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    Z. Bern, S. Davies, T. Dennen, A.V. Smirnov and V.A. Smirnov, Ultraviolet Properties of N = 4 Supergravity at Four Loops, Phys. Rev. Lett. 111(2013) 231302 [arXiv:1309.2498] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    S.G. Naculich, H. Nastase and H.J. Schnitzer, All-loop infrared-divergent behavior of most-subleading-color gauge-theory amplitudes, JHEP 04 (2013) 114 [arXiv:1301.2234] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. [28]

    Y.-J. Du, B. Feng and C.-H. Fu, Dual-color decompositions at one-loop level in Yang-Mills theory, JHEP 06 (2014) 157 [arXiv:1402.6805] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    C.R. Mafra and O. Schlotterer, Towards one-loop SYM amplitudes from the pure spinor BRST cohomology, Fortsch. Phys. 63 (2015) 105 [arXiv:1410.0668] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    Z. Bern, S. Davies and T. Dennen, Enhanced ultraviolet cancellations in \( \mathcal{N}=5 \) supergravity at four loops, Phys. Rev. D 90 (2014) 105011 [arXiv:1409.3089] [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    C.R. Mafra and O. Schlotterer, Two-loop five-point amplitudes of super Yang-Mills and supergravity in pure spinor superspace, JHEP 10 (2015) 124 [arXiv:1505.02746] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. [32]

    S. He, R. Monteiro and O. Schlotterer, String-inspired BCJ numerators for one-loop MHV amplitudes, JHEP 01 (2016) 171 [arXiv:1507.06288] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    Z. Bern, S. Davies and J. Nohle, Double-Copy Constructions and Unitarity Cuts, Phys. Rev. D 93 (2016) 105015 [arXiv:1510.03448] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    G. Mogull and D. O’Connell, Overcoming Obstacles to Colour-Kinematics Duality at Two Loops, JHEP 12 (2015) 135 [arXiv:1511.06652] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. [35]

    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Spontaneously Broken Yang-Mills-Einstein Supergravities as Double Copies, arXiv:1511.01740 [INSPIRE].

  36. [36]

    R. Saotome and R. Akhoury, Relationship Between Gravity and Gauge Scattering in the High Energy Limit, JHEP 01 (2013) 123 [arXiv:1210.8111] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    A. Sabio Vera, E. Serna Campillo and M. Á. Vázquez-Mozo, Color-Kinematics Duality and the Regge Limit of Inelastic Amplitudes, JHEP 04 (2013) 086 [arXiv:1212.5103] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  38. [38]

    H. Johansson, A. Sabio Vera, E. Serna Campillo and M. Á. Vázquez-Mozo, Color-Kinematics Duality in Multi-Regge Kinematics and Dimensional Reduction, JHEP 10 (2013) 215 [arXiv:1307.3106] [INSPIRE].

    ADS  Article  Google Scholar 

  39. [39]

    H. Johansson, A. Sabio Vera, E. Serna Campillo and M. Á. Vázquez-Mozo, Color-kinematics duality and dimensional reduction for graviton emission in Regge limit, arXiv:1310.1680 [INSPIRE].

  40. [40]

    R. Monteiro and D. O’Connell, The Kinematic Algebras from the Scattering Equations, JHEP 03 (2014) 110 [arXiv:1311.1151] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. [41]

    M. Tolotti and S. Weinzierl, Construction of an effective Yang-Mills Lagrangian with manifest BCJ duality, JHEP 07 (2013) 111 [arXiv:1306.2975] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. [42]

    C.-H. Fu, Y.-J. Du and B. Feng, Note on Construction of Dual-trace Factor in Yang-Mills Theory, JHEP 10 (2013) 069 [arXiv:1305.2996] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. [43]

    Y.-J. Du, B. Feng and C.-H. Fu, The Construction of Dual-trace Factor in Yang-Mills Theory, JHEP 07 (2013) 057 [arXiv:1304.2978] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  44. [44]

    C.-H. Fu, Y.-J. Du and B. Feng, An algebraic approach to BCJ numerators, JHEP 03 (2013) 050 [arXiv:1212.6168] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    S.G. Naculich, Scattering equations and BCJ relations for gauge and gravitational amplitudes with massive scalar particles, JHEP 09 (2014) 029 [arXiv:1407.7836] [INSPIRE].

    ADS  Article  Google Scholar 

  46. [46]

    S.G. Naculich, Scattering equations and virtuous kinematic numerators and dual-trace functions, JHEP 07 (2014) 143 [arXiv:1404.7141] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  47. [47]

    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes in \( \mathcal{N}=2 \) Maxwell-Einstein and Yang-Mills/Einstein supergravity, JHEP 01 (2015) 081 [arXiv:1408.0764] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. [48]

    J.J.M. Carrasco, R. Kallosh, R. Roiban and A.A. Tseytlin, On the U(1) duality anomaly and the S-matrix of N = 4 supergravity, JHEP 07 (2013) 029 [arXiv:1303.6219] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. [49]

    S. Litsey and J. Stankowicz, Kinematic numerators and a double-copy formula for N = 4 super-Yang-Mills residues, Phys. Rev. D 90 (2014) 025013 [arXiv:1309.7681] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    S. Nagy, Chiral Squaring, arXiv:1412.4750 [INSPIRE].

  51. [51]

    A. Anastasiou, L. Borsten, M.J. Hughes and S. Nagy, Global symmetries of Yang-Mills squared in various dimensions, JHEP 01 (2016) 148 [arXiv:1502.05359] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. [52]

    H. Johansson and A. Ochirov, Color-Kinematics Duality for QCD Amplitudes, JHEP 01 (2016) 170 [arXiv:1507.00332] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. [53]

    S. Lee, C.R. Mafra and O. Schlotterer, Non-linear gauge transformations in D = 10 SYM theory and the BCJ duality, JHEP 03 (2016) 090 [arXiv:1510.08843] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    S.M. Barnett, Maxwellian theory of gravitational waves and their mechanical properties, New J. Phys. 16 (2014) 023027 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. [55]

    R. Monteiro, D. O’Connell and C.D. White, Black holes and the double copy, JHEP 12 (2014) 056 [arXiv:1410.0239] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  56. [56]

    A. Luna, R. Monteiro, D. O’Connell and C.D. White, The classical double copy for Taub-UT spacetime, Phys. Lett. B 750 (2015) 272 [arXiv:1507.01869] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    A.H. Taub, Empty space-times admitting a three parameter group of motions, Annals Math. 53 (1951) 472.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  58. [58]

    E. Newman, L. Tamburino and T. Unti, Empty-pace generalization of the Schwarzschild metric, J. Math. Phys. 4 (1963) 915.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. [59]

    A.K. Ridgway and M.B. Wise, Static Spherically Symmetric Kerr-Schild Metrics and Implications for the Classical Double Copy, arXiv:1512.02243 [INSPIRE].

  60. [60]

    E.T. Newman and T.W.J. Unti, A class of null flat-space coordinate systems, J. Math. Phys. 4 (1963) 1467.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  61. [61]

    W. Kinnersley and M. Walker, Uniformly accelerating charged mass in general relativity, Phys. Rev. D 2 (1970) 1359 [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  62. [62]

    P. Vaidya and W. Bonnor, Exact solutions of the Einstein-Maxwell equations for an accelerated charge, (1972) [INSPIRE].

  63. [63]

    H. Stephani, D. Kramer, M.A. MacCallum, C. Hoenselaers and E. Herlt, Exact solutions of Einstein’s field equations, Cambridge University Press, Cambridge U.K. (2003).

    Book  MATH  Google Scholar 

  64. [64]

    J.D. Jackson, Classical electrodynamics, third edition, Wiley, New York U.S.A. (1999).

  65. [65]

    M.E. Peskin and D.V. Schroeder, An Introduction to quantum field theory, Westview Press, Boulder U.S.A. (1995).

    Google Scholar 

  66. [66]

    S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516.

    ADS  MathSciNet  Article  Google Scholar 

  67. [67]

    C.-H. Fu and K. Krasnov, Colour-Kinematics duality and the Drinfeld double of the Lie algebra of diffeomorphisms, arXiv:1603.02033 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Donal O’Connell.

Additional information

ArXiv ePrint: 1603.05737

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luna, A., Monteiro, R., Nicholson, I. et al. The double copy: Bremsstrahlung and accelerating black holes. J. High Energ. Phys. 2016, 23 (2016). https://doi.org/10.1007/JHEP06(2016)023

Download citation

Keywords

  • Scattering Amplitudes
  • Gauge Symmetry