Skip to main content
Log in

Relationship between gravity and gauge scattering in the high energy limit

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Investigations of high-energy graviton-graviton and gluon-gluon scattering are performed in the leading eikonal approximation for the kinematic regime of large center of mass energy and low momentum transfer. When we retain only a set of gauge theory diagrams for which the collinear divergences cancel amongst themselves, we find a double copy relation between the amplitudes of the two theories to all loop orders. For this to happen the color structure of all diagrams in a set must be arranged to be identical. Using standard field theoretic methods, it is shown that this relation is reflected in a similar double copy relationship between the classical shockwaves of the two theories as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Bern, J. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. G. ’t Hooft, Graviton dominance in ultrahigh-energy scattering, Phys. Lett. B 198 (1987) 61 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. D. Amati, M. Ciafaloni and G. Veneziano, Superstring collisions at planckian energies, Phys. Lett. B 197 (1987) 81 [INSPIRE].

    ADS  Google Scholar 

  5. D. Amati, M. Ciafaloni and G. Veneziano, Classical and quantum gravity effects from planckian energy superstring collisions, Int. J. Mod. Phys. A 3 (1988) 1615 [INSPIRE].

    ADS  Google Scholar 

  6. D. Amati, M. Ciafaloni and G. Veneziano, Higher order gravitational deflection and soft bremsstrahlung in planckian energy superstring collisions, Nucl. Phys. B 347 (1990) 550 [INSPIRE].

    Article  ADS  Google Scholar 

  7. D. Amati, M. Ciafaloni and G. Veneziano, Planckian scattering beyond the semiclassical approximation, Phys. Lett. B 289 (1992) 87 [INSPIRE].

    ADS  Google Scholar 

  8. D. Amati, M. Ciafaloni and G. Veneziano, Effective action and all order gravitational eikonal at Planckian energies, Nucl. Phys. B 403 (1993) 707 [INSPIRE].

    Article  ADS  Google Scholar 

  9. S.B. Giddings, D.J. Gross and A. Maharana, Gravitational effects in ultrahigh-energy string scattering, Phys. Rev. D 77 (2008) 046001 [arXiv:0705.1816] [INSPIRE].

    ADS  Google Scholar 

  10. S.B. Giddings, The gravitational S-matrix: Erice lectures, arXiv:1105.2036 [INSPIRE].

  11. S. Weinberg, Infrared Photons and Gravitons, Phys. Rev. 140 (1965) 516.

    Article  MathSciNet  ADS  Google Scholar 

  12. R. Akhoury, R. Saotome and G. Sterman, Collinear and soft divergences in perturbative quantum gravity, Phys. Rev. D 84 (2011) 104040 [arXiv:1109.0270] [INSPIRE].

    ADS  Google Scholar 

  13. M. Beneke and G. Kirilin, Soft-collinear gravity, JHEP 09 (2012) 066 [arXiv:1207.4926] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Oxburgh and C. White, BCJ duality and the double copy in the soft limit, arXiv:1210.1110 [INSPIRE].

  15. P. Aichelburg and R. Sexl, On the gravitational field of a massless particle, Gen. Rel. Grav. 2 (1971) 303 [INSPIRE].

    Article  ADS  Google Scholar 

  16. T. Dray and G. ’t Hooft, The gravitational shock wave of a massless particle, Nucl. Phys. B 253 (1985) 173 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Jackiw, D.N. Kabat and M. Ortiz, Electromagnetic fields of a massless particle and the eikonal, Phys. Lett. B 277 (1992) 148 [hep-th/9112020] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. H. Cheng and T.T. Wu, Expanding Protons: Scattering at High Energies, M.I.T. Press, Cambridge U.S.A. (1987).

    Google Scholar 

  19. H.L. Verlinde and E.P. Verlinde, QCD at high-energies and two-dimensional field theory, hep-th/9302104 [INSPIRE].

  20. Y. Feng, O. Hamidi-Ravari and C. Lam, Cut diagrams for high-energy scatterings, Phys. Rev. D 54 (1996) 3114 [hep-ph/9604429] [INSPIRE].

    ADS  Google Scholar 

  21. C. Boucher-Veronneau and L. Dixon, \( \mathcal{N}\geq 4 \) supergravity amplitudes from gauge theory at two loops, JHEP 12 (2011) 046 [arXiv:1110.1132] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. G.F. Sterman, An Introduction to quantum field theory, Cambridge University Press, Cambridge U.K. (1993) [INSPIRE].

    Book  Google Scholar 

  23. W. Siegel, Fields, hep-th/9912205 [INSPIRE].

  24. B.S. DeWitt, Quantum theory of gravity. III. Applications of the Covariant Theory, Phys. Rev. 162 (1967) 1239 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Saotome.

Additional information

ArXiv ePrint: 1210.8111

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saotome, R., Akhoury, R. Relationship between gravity and gauge scattering in the high energy limit. J. High Energ. Phys. 2013, 123 (2013). https://doi.org/10.1007/JHEP01(2013)123

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2013)123

Keywords

Navigation