Skip to main content
Log in

Charged black string bounce and its field source

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This work builds upon the previous article (Lima in Symmetry 15:150, 2023) and explores the solution of the charged black string introduced in Lemos (Phys Rev 54:3840-3853, 1996). The black bounce regularization method, based on the Simpson-Visser solution, is employed by transforming the radial variable using \(r\rightarrow \sqrt{r^2+a^2}\). The regular charged black string metric is defined, and the properties of event horizons, surface gravity, and Hawking temperature are investigated. The behavior of curvature quantities, including curvature invariants and tensors, is examined to verify the absence of singularities when \(a\ne 0\). The Einstein equation for the energy-momentum tensor is solved, and the null energy condition is analyzed for the obtained solution. The sources of this solution are evaluated, combining a scalar field with nonlinear electrodynamics. However, unlike other works, an electric field is considered instead of a magnetic field. Finally, the study calculates the possibility of stable or unstable circular orbits for massive and massless particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Lima, A.M., de Alencar Filho, G.M., Furtado Neto, J.: S.: Symmetry 15(1), 150 (2023). https://doi.org/10.3390/sym15010150. arXiv:2211.12349 [gr-qc]

    Article  ADS  Google Scholar 

  2. Lemos, J.P.S., Zanchin, V.T.: Phys. Rev. D 54, 3840–3853 (1996). https://doi.org/10.1103/PhysRevD.54.3840. arXiv:hep-th/9511188 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  3. Akiyama, K., et al.: Event horizon telescope. Astrophys. J. Lett. 930(2), L12 (2022). https://doi.org/10.3847/2041-8213/ac6674

    Article  ADS  Google Scholar 

  4. Akiyama, K., et al.: Event Horizon Telescope. Astrophys. J. Lett. 875, L1 (2019). https://doi.org/10.3847/2041-8213/ab0ec7. arXiv:1906.11238 [astro-ph.GA]

    Article  ADS  Google Scholar 

  5. Abbott, B.P., et al.: LIGO scientific and virgo. Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102. arXiv:1602.03837 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  6. Abbott, B.P., et al.: LIGO scientific and virgo. Phys. Rev. Lett. 119(16), 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101. arXiv:1710.05832 [gr-qc]

    Article  ADS  Google Scholar 

  7. Vilenkin, A.: Phys. Rept. 121, 263–315 (1985). https://doi.org/10.1016/0370-1573(85)90033-X

    Article  ADS  Google Scholar 

  8. Carballo-Rubio, R., Di Filippo, F., Liberati, S., Pacilio, C., Visser, M.: JHEP 07, 023 (2018). https://doi.org/10.1007/JHEP07(2018)023. arXiv:1805.02675 [gr-qc]

    Article  ADS  Google Scholar 

  9. Hayward, S.A.: Phys. Rev. Lett. 96, 031103 (2006). https://doi.org/10.1103/PhysRevLett.96.031103

    Article  ADS  Google Scholar 

  10. Bardeen, J.M.: Proc. Int. Conf. GR5, Tbilisi 174 (1968)

  11. Bambi, C., Modesto, L.: Phys. Lett. B 721, 329–334 (2013). https://doi.org/10.1016/j.physletb.2013.03.025. arXiv:1302.6075 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  12. Bronnikov, K.A., Fabris, J.C.: Phys. Rev. Lett. 96, 251101 (2006). https://doi.org/10.1103/PhysRevLett.96.251101. arXiv:gr-qc/0511109 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  13. Bronnikov, K.A.: Phys. Rev. D 63, 044005 (2001). https://doi.org/10.1103/PhysRevD.63.044005. [arXiv:gr-qc/0006014 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  14. Simpson, A., Visser, M.: JCAP 02, 042 (2019). https://doi.org/10.1088/1475-7516/2019/02/042. [arXiv:1812.07114 [gr-qc]]

    Article  ADS  Google Scholar 

  15. Simpson, A.: [arXiv:2110.05657 [gr-qc]]

  16. Bambhaniya, P., Jusufi, S.K, K., Joshi, P.S.: Phys. Rev. D 105(2), 023021 (2022) https://doi.org/10.1103/PhysRevD.105.023021, [arXiv:2109.15054 [gr-qc]]

  17. Terno, D.R.: Phys. Rev. D 106(4), 044035 (2022). https://doi.org/10.1103/PhysRevD.106.044035. arXiv:2203.03770 [gr-qc]

    Article  ADS  Google Scholar 

  18. Junior, E.L.B., Rodrigues, M.E.: [arXiv:2203.03629 [gr-qc]]

  19. Islam, S.U., Kumar, J., Ghosh, S.G.: Rotating Simpson-Visser black holes’’. JCAP 10, 013 (2021). https://doi.org/10.1088/1475-7516/2021/10/013. arXiv:2104.00696 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  20. Nascimento, J.R., Petrov, A.Y., Porfirio, P.J., Soares, A.R.: Phys. Rev. D 102(4), 044021 (2020). https://doi.org/10.1103/PhysRevD.102.044021. [arXiv:2005.13096 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  21. Tsukamoto, N.: Phys. Rev. D 103(2), 024033 (2021). https://doi.org/10.1103/PhysRevD.103.024033. [arXiv:2011.03932 [gr-qc]]

    Article  ADS  Google Scholar 

  22. Övgün, A.: Turk. J. Phys. 44(5), 465–471 (2020). arXiv:2011.04423 [gr-qc]

    Article  Google Scholar 

  23. Chataignier, L., Kamenshchik, A.Y., Tronconi, A., Venturi, G.: [arXiv:2208.02280 [gr-qc]]

  24. Bronnikov, K.A.: Phys. Rev. D 106(6), 064029 (2022). https://doi.org/10.1103/PhysRevD.106.064029. [arXiv:2206.09227 [gr-qc]]

    Article  ADS  Google Scholar 

  25. Stuchlík, Z., Vrba, J.: Universe 7(8), 279 (2021). https://doi.org/10.3390/universe7080279. [arXiv:2108.09562 [gr-qc]]

    Article  ADS  Google Scholar 

  26. Churilova, M.S., Stuchlik, Z.: Class. Quant. Grav. 37(7), 075014 (2020)

    Article  ADS  Google Scholar 

  27. Yang, Y., Liu, D., Xu, Z., Long, Z.W.: [arXiv:2210.12641 [gr-qc]]

  28. Vagnozzi, S., Roy, R., Tsai, Y. D., Visinelli, L., Afrin, M., Allahyari, A., Bambhaniya, P., Dey, D., Ghosh, S.G., Joshi, P.S.: [arXiv:2205.07787 [gr-qc]]

  29. Lobo, F.S.N., Rodrigues, M.E., Silva, M.V.d.S., Simpson, A., Visser, M.: Phys. Rev. D 103(8), 084052 (2021)

  30. Rodrigues, M.E., Silva, M.V.d.S.: Phys. Rev. D 107(4), 044064 (2023) https://doi.org/10.1103/PhysRevD.107.044064, [arXiv:2302.10772 [gr-qc]]

  31. Bronnikov, K.A., Walia, R.K.: Phys. Rev. D 105(4), 044039 (2022). https://doi.org/10.1103/PhysRevD.105.044039. [arXiv:2112.13198 [gr-qc]]

    Article  ADS  Google Scholar 

  32. Bakhtiarizadeh, H.R., Golchin, H.: [arXiv:2305.03337 [gr-qc]]

  33. Lemos, J.P.S.: Phys. Lett. B 353, 46–51 (1995). https://doi.org/10.1016/0370-2693(95)00533-Q. arXiv:gr-qc/9404041 [gr-qc]

  34. Franzin, E., Liberati, S., Mazza, J., Simpson, A., Visser, M.: JCAP 07, 036 (2021). https://doi.org/10.1088/1475-7516/2021/07/036. arXiv:2104.11376 [gr-qc]

    Article  ADS  Google Scholar 

  35. Morris, M.S., Thorne, K.S.: Am. J. Phys. 56, 395–412 (1988). https://doi.org/10.1119/1.15620

    Article  ADS  Google Scholar 

  36. Alencar, G., Muniz, C.R.: JCAP 03, 040 (2018). https://doi.org/10.1088/1475-7516/2018/03/040. arXiv:1801.00483 [hep-th]

    Article  ADS  Google Scholar 

  37. Simpson, A.: [arXiv:2304.07383 [gr-qc]]

  38. Hendi, S.H., Sheykhi, A.: Phys. Rev. D 88(4), 044044 (2013). https://doi.org/10.1103/PhysRevD.88.044044. [arXiv:1405.6998 [gr-qc]]

    Article  ADS  Google Scholar 

  39. Jefremov, P.I., Tsupko, O.Y., Bisnovatyi-Kogan, G.S.: Phys. Rev. D 91(12), 124030 (2015). https://doi.org/10.1103/PhysRevD.91.124030. [arXiv:1503.07060 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  40. Bronnikov, K.A., Rodrigues, M.E., Silva, M.V.d.S.: [arXiv:2305.19296 [gr-qc]]

Download references

Acknowledgements

The authors would like to thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) for finantial support.

Funding

This manuscript was supported financially by CNPq, FUNCAP, and CAPES.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AL, GA, RNCF and RRL; methodology, AL, GA, RNCF and R RL; validation, AL, GA, RNCF and R RL; formal analysis, AL, GA, RNCF and RRL; investigation, AL, GA, RNC F and RRL; writing-original draft preparation, AL, GA, RNCF and RRL; writing-review and editing, AL, GA, RNCF and RRL; visualization, AL, GA, RNCF and RR L. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to A. Lima.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest of any kind.

Ethics approval

All authors agree with the ethical responsibilities of this journal.

Consent to participate

All authors agree to participate in this manuscript.

Consent for publication

All authors agree to the publication of this manuscript.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, A., Alencar, G., Costa Filho, R.N. et al. Charged black string bounce and its field source. Gen Relativ Gravit 55, 108 (2023). https://doi.org/10.1007/s10714-023-03156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03156-x

Keywords

Navigation