Skip to main content
Log in

The kinematic algebra from the self-dual sector

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We identify a diffeomorphism Lie algebra in the self-dual sector of Yang-Mills theory, and show that it determines the kinematic numerators of tree-level MHV amplitudes in the full theory. These amplitudes can be computed off-shell from Feynman diagrams with only cubic vertices, which are dressed with the structure constants of both the Yang-Mills colour algebra and the diffeomorphism algebra. Therefore, the latter algebra is the dual of the colour algebra, in the sense suggested by the work of Bern, Carrasco and Johansson. We further study perturbative gravity, both in the self-dual and in the MHV sectors, finding that the kinematic numerators of the theory are the BCJ squares of the Yang-Mills numerators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kawai, D.C. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  3. N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  4. S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211 [SPIRES].

  5. B. Feng, R. Huang and Y. Jia, Gauge amplitude identities by on-shell recursion relation in S-matrix program, Phys. Lett. B 695 (2011) 350 [arXiv:1004.3417] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [SPIRES].

    ADS  Google Scholar 

  7. M. Kiermaier, Gravity as the square of gauge theory, Prog. Theor. Phys. Suppl. 188 (2011) 177 [SPIRES].

    Article  ADS  MATH  Google Scholar 

  8. N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The momentum kernel of gauge and gravity theories, JHEP 01 (2011) 001 [arXiv:1010.3933] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, arXiv:1104.5224 [SPIRES].

  10. Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  11. T. Sondergaard, New relations for gauge-theory amplitudes with matter, Nucl. Phys. B 821 (2009) 417 [arXiv:0903.5453] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, Monodromy and Jacobi-like relations for color-ordered amplitudes, JHEP 06 (2010) 003 [arXiv:1003.2403] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. S.H. Henry Tye and Y. Zhang, Dual identities inside the gluon and the graviton scattering amplitudes, JHEP 06 (2010) 071 [arXiv:1003.1732] [SPIRES].

    Article  ADS  Google Scholar 

  14. Y. Jia, R. Huang and C.-Y. Liu, U(1)-decoupling, KK and BCJ relations in \( \mathcal{N} = 4 \) SYM, Phys. Rev. D 82 (2010) 065001 [arXiv:1005.1821] [SPIRES].

    ADS  Google Scholar 

  15. N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Gravity and Yang-Mills amplitude relations, Phys. Rev. D 82 (2010) 107702 [arXiv:1005.4367] [SPIRES].

    ADS  Google Scholar 

  16. H. Tye and Y. Zhang, Comment on the identities of the gluon tree amplitudes, arXiv:1007.0597 [SPIRES].

  17. D. Vaman and Y.-P. Yao, Constraints and generalized gauge transformations on tree-level gluon and graviton amplitudes, JHEP 11 (2010) 028 [arXiv:1007.3475] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. Y.-X. Chen, Y.-J. Du and B. Feng, On tree amplitudes with gluons coupled to gravitons, JHEP 01 (2011) 081 [arXiv:1011.1953] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. N.E.J. Bjerrum-Bohr, P.H. Damgaard, B. Feng and T. Sondergaard, Unusual identities for QCD at tree-level, J. Phys. Conf. Ser. 287 (2011) 012030 [arXiv:1101.5555] [SPIRES].

    Article  ADS  Google Scholar 

  20. Z. Bern and T. Dennen, A color dual form for gauge-theory amplitudes, arXiv:1103.0312 [SPIRES].

  21. N.E.J. Bjerrum-Bohr, P.H. Damgaard, H. Johansson and T. Sondergaard, Monodromy–like relations for finite loop amplitudes, JHEP 05 (2011) 039 [arXiv:1103.6190] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  22. O. Hohm, On factorizations in perturbative quantum gravity, JHEP 04 (2011) 103 [arXiv:1103.0032] [SPIRES].

    Article  ADS  MathSciNet  Google Scholar 

  23. D.-p. Zhu, Zeros in scattering amplitudes and the structure of nonabelian gauge theories, Phys. Rev. D 22 (1980) 2266 [SPIRES].

    Google Scholar 

  24. C.J. Goebel, F. Halzen and J.P. Leveille, Angular zeros of Brown, Mikaelian, Sahdev and Samuel and the factorization of tree amplitudes in gauge theories, Phys. Rev. D 23 (1981) 2682 [SPIRES].

    ADS  Google Scholar 

  25. G. Chalmers and W. Siegel, Simplifying algebra in Feynman graphs. II: Spinor helicity from the spacecone, Phys. Rev. D 59 (1999) 045013 [hep-ph/9801220] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. D.G. Boulware and L.S. Brown, Tree graphs and classical fields, Phys. Rev. 172 (1968) 1628 [SPIRES].

    Article  ADS  Google Scholar 

  27. F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [SPIRES].

    Article  ADS  Google Scholar 

  28. L.S. Brown, Summing tree graphs at threshold, Phys. Rev. D 46 (1992) 4125 [hep-ph/9209203] [SPIRES].

    ADS  Google Scholar 

  29. W.A. Bardeen, Self-dual Yang-Mills theory, integrability and multi-parton amplitudes, Yukawa International Seminar 1995: from the standard model to grand unified theories, Kyoto Japan, 21–25 Aug 1995, FERMILAB-CONF-95-379-T [SPIRES].

  30. D. Cangemi, Self-dual Yang-Mills theory and one-loop maximally helicity violating multi-gluon amplitudes, Nucl. Phys. B 484 (1997) 521 [hep-th/9605208] [SPIRES].

    Article  ADS  Google Scholar 

  31. G. Chalmers and W. Siegel, The self-dual sector of QCD amplitudes, Phys. Rev. D 54 (1996) 7628 [hep-th/9606061] [SPIRES].

    ADS  Google Scholar 

  32. L.J. Mason and D. Skinner, Gravity, twistors and the MHV formalism, Commun. Math. Phys. 294 (2010) 827 [arXiv:0808.3907] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. J.F. Plebanski, Some solutions of complex Einstein equations, J. Math. Phys. 16 (1975) 2395 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. J. Hoppe, Quantum theory of a massless relativistic surface and a two-dimensional bound state problem, Ph.D. Thesis, M.I.T., Boston U.S.A. (1982) [http://dspace.mit.edu/handle/1721.1/15717].

  35. S. Ananth, L. Brink, R. Heise and H.G. Svendsen, The N = 8 supergravity Hamiltonian as a quadratic form, Nucl. Phys. B 753 (2006) 195 [hep-th/0607019] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. S. Ananth and S. Theisen, KLT relations from the Einstein-Hilbert Lagrangian, Phys. Lett. B 652 (2007) 128 [arXiv:0706.1778] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  37. S. Ananth, The quintic interaction vertex in light-cone gravity, Phys. Lett. B 664 (2008) 219 [arXiv:0803.1494] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. L.J. Mason and E.T. Newman, A connection between the Einstein and Yang-Mills equations, Commun. Math. Phys. 121 (1989) 659 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. M. Dunajski and L.J. Mason, Hyper-Kähler hierarchies and their twistor theory, Commun. Math. Phys. 213 (2000) 641 [math/0001008]. = MATH/0001008;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. J. Broedel and R. Kallosh, From lightcone actions to maximally supersymmetric amplitudes, JHEP 06 (2011) 024 [arXiv:1103.0322] [SPIRES].

    Article  ADS  Google Scholar 

  41. A.D. Popov, M. Bordemann and H. Romer, Symmetries, currents and conservation laws of self-dual gravity, Phys. Lett. B 385 (1996) 63 [hep-th/9606077] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  42. A.D. Popov, Self-dual Yang-Mills: symmetries and moduli space, Rev. Math. Phys. 11 (1999) 1091 [hep-th/9803183] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  43. M. Wolf, On hidden symmetries of a super gauge theory and twistor string theory, JHEP 02 (2005) 018 [hep-th/0412163] [SPIRES].

    Article  ADS  Google Scholar 

  44. A.D. Popov and M. Wolf, Hidden symmetries and integrable hierarchy of the N = 4 supersymmetric Yang-Mills equations, Commun. Math. Phys. 275 (2007) 685 [hep-th/0608225] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Monteiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monteiro, R., O’Connell, D. The kinematic algebra from the self-dual sector. J. High Energ. Phys. 2011, 7 (2011). https://doi.org/10.1007/JHEP07(2011)007

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)007

Keywords

Navigation