Skip to main content
Log in

Color-kinematics duality and the Regge limit of inelastic amplitudes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate tree-level five-point amplitudes in scalar-QCD expressed in terms of Sudakov variables and find the equivalent “gravitational” counterparts using the color-kinematics duality proposed by Bern, Carrasco, and Johansson. Taking the multi-Regge limit in the gravitational amplitudes, we show that those pieces in the coupling of two reggeized gravitons to one on-shell graviton directly stemming from the double copy of the vertex for two reggeized gluons to one on-shell gluon are universal and properly reproduced by the duality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Bern, Perturbative quantum gravity and its relation to gauge theory, Living Rev. Rel. 5 (2002) 5 [gr-qc/0206071] [INSPIRE].

    MathSciNet  Google Scholar 

  2. J.J.M. Carrasco and H. Johansson, Generic multiloop methods and application to \( \mathcal{N}=4 \) super-Yang-Mills, J. Phys. A 44 (2011) 454004 [arXiv:1103.3298] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. H. Kawai, D. Lewellen and S.H.H. Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. D.C. Dunbar and P.S. Norridge, Calculation of graviton scattering amplitudes using string based methods, Nucl. Phys. B 433 (1995) 181 [hep-th/9408014] [INSPIRE].

    Article  ADS  Google Scholar 

  5. Z. Bern, D.C. Dunbar and T. Shimada, String based methods in perturbative gravity, Phys. Lett. B 312 (1993) 277 [hep-th/9307001] [INSPIRE].

    Article  ADS  Google Scholar 

  6. Z. Bern and D.C. Dunbar, A mapping between Feynman and string motivated one loop rules in gauge theories, Nucl. Phys. B 379 (1992) 562 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the square of gauge theory, Phys. Rev. D 82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].

    ADS  Google Scholar 

  10. Z. Bern and T. Dennen, A color dual form for gauge-theory amplitudes, Phys. Rev. Lett. 107 (2011) 081601 [arXiv:1103.0312] [INSPIRE].

    Article  ADS  Google Scholar 

  11. S.H.H. Tye and Y. Zhang, Dual identities inside the gluon and the graviton scattering amplitudes, JHEP 06 (2010) 071 [Erratum ibid. 04 (2011) 114] [arXiv:1003.1732] [INSPIRE].

  12. C.R. Mafra, O. Schlotterer and S. Stieberger, Explicit BCJ numerators from pure spinors, JHEP 07 (2011) 092 [arXiv:1104.5224] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Oxburgh and C.D. White, BCJ duality and the double copy in the soft limit, JHEP 02 (2013) 127 [arXiv:1210.1110] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. L.N. Lipatov, Reggeization of the vector meson and the vacuum singularity in non-Abelian gauge theories, Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23 (1976) 642] [INSPIRE].

  15. V.S. Fadin, E.A. Kuraev and L.N. Lipatov, On the Pomeranchuk singularity in asymptotically free theories, Phys. Lett. B 60 (1975) 50 [INSPIRE].

    Article  ADS  Google Scholar 

  16. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, Multi-Reggeon processes in the Yang-Mills theory, Sov. Phys. JETP 44 (1976) 443 [Zh. Eksp. Teor. Fiz. 71 (1976) 840] [INSPIRE].

  17. E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in non-Abelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [Zh. Eksp. Teor. Fiz. 72 (1977) 377] [INSPIRE].

  18. I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597] [INSPIRE].

  19. L.N. Lipatov, Effective action for the Regge processes in gravity, Phys. Part. Nucl. 44 (2013) 391 [arXiv:1105.3127] [INSPIRE].

    Article  Google Scholar 

  20. L.N. Lipatov, Graviton Reggeization, Phys. Lett. B 116 (1982) 411 [INSPIRE].

    Article  ADS  Google Scholar 

  21. L.N. Lipatov, Multi-Regge processes in gravitation, Sov. Phys. JETP 55 (1982) 582 [Zh. Eksp. Teor. Fiz. 82 (1982) 991] [INSPIRE].

  22. L.N. Lipatov, High-energy scattering in QCD and in quantum gravity and two-dimensional field theories, Nucl. Phys. B 365 (1991) 614 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. J. Bartels, L.N. Lipatov and A. Sabio Vera, Double-logarithms in Einstein-Hilbert gravity and supergravity, arXiv:1208.3423 [INSPIRE].

  24. A. Sabio Vera, E. Serna Campillo and M.A. Vázquez-Mozo, Graviton emission in Einstein-Hilbert gravity, JHEP 03 (2012) 005 [arXiv:1112.4494] [INSPIRE].

    Article  Google Scholar 

  25. J.J.M. Carrasco and H. Johansson, Five-point amplitudes in \( \mathcal{N}=4 \) super-Yang-Mills Theory and \( \mathcal{N}=8 \) supergravity, Phys. Rev. D 85 (2012) 025006 [arXiv:1106.4711] [INSPIRE].

    ADS  Google Scholar 

  26. Z. Bern, C. Boucher-Veronneau and H. Johansson, \( \mathcal{N}\geq 4 \) supergravity amplitudes from gauge theory at one loop, Phys. Rev. D 84 (2011) 105035 [arXiv:1107.1935] [INSPIRE].

    Google Scholar 

  27. C. Itzykson and J.B. Zuber, Quantum field theory, McGraw-Hill, New York U.S.A. (1980) [INSPIRE].

    Google Scholar 

  28. O. Steinmann, Über den Zusammenhang zwischen den Wightmanfunktionen und der retardierten Kommutatoren (in German), Helv. Phys. Acta 33 (1960) 257.

    MathSciNet  MATH  Google Scholar 

  29. O. Steinmann, Wightman-Funktionen und retardierten Kommutatoren. II (in German), Helv. Phys. Acta 33 (1960) 347.

    MathSciNet  MATH  Google Scholar 

  30. J. Bartels, L.N. Lipatov and A. Sabio Vera, BFKL Pomeron, Reggeized gluons and Bern-Dixon-Smirnov amplitudes, Phys. Rev. D 80 (2009) 045002 [arXiv:0802.2065] [INSPIRE].

    ADS  Google Scholar 

  31. J. Bartels, L.N. Lipatov and A. Sabio Vera, \( \mathcal{N}=4 \) supersymmetric Yang-Mills scattering amplitudes at high energies: the Regge cut contribution, Eur. Phys. J. C 65 (2010) 587 [arXiv:0807.0894] [INSPIRE].

    Article  ADS  Google Scholar 

  32. M.A. Vázquez-Mozo, A note on supersymmetric Yang-Mills thermodynamics, Phys. Rev. D 60 (1999) 106010 [hep-th/9905030] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Á. Vázquez-Mozo.

Additional information

ArXiv ePrint: 1212.5103

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vera, A.S., Campillo, E.S. & Vázquez-Mozo, M.Á. Color-kinematics duality and the Regge limit of inelastic amplitudes. J. High Energ. Phys. 2013, 86 (2013). https://doi.org/10.1007/JHEP04(2013)086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)086

Keywords

Navigation