Skip to main content
Log in

On the U(1) duality anomaly and the S-matrix of \( \mathcal{N} \) = 4 supergravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

\( \mathcal{N} \) = 4 Poincaré supergravity has a global SU(1, 1) duality symmetry that acts manifestly only on shell as it involves duality rotations of vector fields. A U(1) subgroup of this symmetry is known to be anomalous at the quantum level in the presence of a non-trivial gravitational background. We first derive this anomaly from a novel perspective, by relating it to a similar anomaly in conformal supergravity where SU(1, 1) acts off shell, using the fact that \( \mathcal{N} \) = 4 Poincaré supergravity has a superconformal formulation. We explicitly construct the corresponding local and nonlocal anomalous terms in the one-loop effective action. We then study how this anomaly is reflected in the supergravity S-matrix. Calculating one-loop \( \mathcal{N} \) = 4 supergravity scattering amplitudes (with and without additional matter multiplets) using color/kinematics duality and the double-copy construction we find that a particular U(1) symmetry which was present in the tree-level amplitudes is broken at the quantum level. This breaking manifests itself in the appearance of new one-loop \( \mathcal{N} \) = 4 supergravity amplitudes that have non-vanishing soft-scalar limits (these amplitudes are absent in \( \mathcal{N} \) > 4 supergravities). We discuss the relation between these symmetry-violating amplitudes and the corresponding U(1) anomalous term in the one-loop supergravity effective action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Cremmer and B. Julia, The SO(8) Supergravity, Nucl. Phys. B 159 (1979) 141 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Cremmer, J. Scherk and S. Ferrara, SU(4) Invariant Supergravity Theory, Phys. Lett. B 74 (1978) 61 [INSPIRE].

    ADS  Google Scholar 

  3. B. de Wit and H. Nicolai, N=8 Supergravity, Nucl. Phys. B 208 (1982) 323 [INSPIRE].

    Article  ADS  Google Scholar 

  4. N. Marcus, Composite anomalies in supergravity, Phys. Lett. B 157 (1985) 383 [INSPIRE].

    ADS  Google Scholar 

  5. G. Bossard, P. Howe and K. Stelle, Anomalies and divergences in N = 4 supergravity, Phys. Lett. B 719 (2013) 424 [arXiv:1212.0841] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. P. di Vecchia, S. Ferrara and L. Girardello, Anomalies of hidden local chiral symmetries in σ-models and extended supergravities, Phys. Lett. B 151 (1985) 199 [INSPIRE].

    ADS  Google Scholar 

  7. B. de Wit and M.T. Grisaru, Compensating Fields And Anomalies, in Quantum field theory and quantum statistics, A.I. Batalin et al. eds., volume 2, pg. 411–432.

  8. A. Vainshtein, A. Dolgov, V.I. Zakharov and I. Khriplovich, Chiral photon current and its anomaly in a gravitational field, Sov. Phys. JETP 67 (1988) 1326 [Zh. Eksp. Teor. Fiz. 94 (1988) 54] [INSPIRE].

    Google Scholar 

  9. A. Dolgov, I. Khriplovich, A. Vainshtein and V.I. Zakharov, Photonic chiral current and its anomaly in a gravitational field, Nucl. Phys. B 315 (1989) 138 [INSPIRE].

    Article  ADS  Google Scholar 

  10. R. Endo and M. Takao, Chiral anomalies of antisymmetric tensor gauge fields in higher dimensions, Prog. Theor. Phys. 78 (1987) 440 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. M. Reuter, The chiral anomaly of antisymmetric tensor fields, Phys. Rev. D 37 (1988) 1456 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. J. Erdmenger, Gravitational axial anomaly for four-dimensional conformal field theories, Nucl. Phys. B 562 (1999) 315 [hep-th/9905176] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. G. Bossard, C. Hillmann and H. Nicolai, E7(7) symmetry in perturbatively quantised N = 8 supergravity, JHEP 12 (2010) 052 [arXiv:1007.5472] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. H. Romer and P. van Nieuwenhuizen, Axial anomalies in N = 4 conformal supergravity, Phys. Lett. B 162 (1985) 290 [INSPIRE].

    ADS  Google Scholar 

  15. E. Bergshoeff, M. de Roo and B. de Wit, Extended Conformal Supergravity, Nucl. Phys. B 182 (1981) 173 [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. de Roo, Matter Coupling in N = 4 Supergravity, Nucl. Phys. B 255 (1985) 515 [INSPIRE].

    Article  ADS  Google Scholar 

  17. H. Elvang and M. Kiermaier, Stringy KLT relations, global symmetries and E7(7) violation, JHEP 10 (2010) 108 [arXiv:1007.4813] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the Simplest Quantum Field Theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. R. Kallosh and T. Kugo, The footprint of E7(7) amplitudes of N = 8 supergravity, JHEP 01 (2009) 072 [arXiv:0811.3414] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. J. Broedel and L.J. Dixon, R4 counterterm and E7(7) symmetry in maximal supergravity, JHEP 05 (2010) 003 [arXiv:0911.5704] [INSPIRE].

    Article  ADS  Google Scholar 

  21. J.J.M. Carrasco, M. Chiodaroli, M. Günaydin and R. Roiban, One-loop four-point amplitudes in pure and matter-coupled N ≤ 4 supergravity, JHEP 03 (2013) 056 [arXiv:1212.1146] [INSPIRE].

    Article  ADS  Google Scholar 

  22. M. Fischler, Finiteness calculations for O(4) through O(8) extended supergravity and O(4) supergravity coupled to selfdual O(4) matter, Phys. Rev. D 20 (1979) 396 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. E. Fradkin and A.A. Tseytlin, One loop infinities in dimensionally reduced supergravities, Phys. Lett. B 137 (1984) 357 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  24. Z. Bern, J. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative Quantum Gravity as a Double Copy of Gauge Theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. A.K. Das, SO(4) Invariant Extended Supergravity, Phys. Rev. D 15 (1977) 2805 [INSPIRE].

    ADS  Google Scholar 

  27. E. Cremmer and J. Scherk, Algebraic Simplifications in Supergravity Theories, Nucl. Phys. B 127 (1977) 259 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. E.A. Bergshoeff, Conformal Invariance In Supergravity, Ph.D. Thesis, Leiden University, Leiden Netherlands (1983).

  29. M.R. Gaberdiel and M.B. Green, An SL(2, \( \mathbb{Z} \)) anomaly in IIB supergravity and its F-theory interpretation, JHEP 11 (1998) 026 [hep-th/9810153] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Christensen and M. Duff, New Gravitational Index Theorems and Supertheorems, Nucl. Phys. B 154 (1979) 301 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. P.H. Frampton, D.R.T. Jones, P. van Nieuwenhuizen and S.C. Zhang, The Chiral Anomaly In Conformal And Ordinary Simple Supergravity In Fujikawas Approach, in Quantum field theory and quantum statistics, I.A. Batalin et al. eds., Volume 2, pg. 379–390.

  32. P. van Nieuwenhuizen, Relations between Chern-Simons terms, anomalies and conformal supergravity, ITP-SB-85-70 (1985).

  33. S. Christensen and M. Duff, Axial and Conformal Anomalies for Arbitrary Spin in Gravity and Supergravity, Phys. Lett. B 76 (1978) 571 [INSPIRE].

    ADS  Google Scholar 

  34. N. Nielsen, M.T. Grisaru, H. Romer and P. van Nieuwenhuizen, Approaches to the gravitational spin 3/2 axial anomaly, Nucl. Phys. B 140 (1978) 477 [INSPIRE].

    Article  ADS  Google Scholar 

  35. L. Álvarez-Gaumé and E. Witten, Gravitational Anomalies, Nucl. Phys. B 234 (1984) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  36. E. Fradkin and A.A. Tseytlin, Conformal supergravity, Phys. Rept. 119 (1985) 233 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. E. Bergshoeff, M. de Roo, J.W. van Holten, B. de Wit and A. Van Proeyen, Extended Conformal Supergravity And Its Applications, in proceedings of Nuffield supergravity workshop, Cambridge University Press, (1981).

  38. H. Kawai, D. Lewellen and S. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. Z. Bern, L.J. Dixon, M. Perelstein and J. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. A. Rosly and K. Selivanov, Helicity conservation in Born-Infeld theory, hep-th/0204229 [INSPIRE].

  41. E. Cremmer, J. Scherk and S. Ferrara, SU(4) Invariant Supergravity Theory, Phys. Lett. B 74 (1978) 61 [INSPIRE].

    ADS  Google Scholar 

  42. M.T. Grisaru, Anomalies, field transformations, and the relation between SU(4) and SO(4) supergravity, Phys. Lett. B 79 (1978) 225 [INSPIRE].

    ADS  Google Scholar 

  43. M. de Roo, Gauged N = 4 matter couplings, Phys. Lett. B 156 (1985) 331 [INSPIRE].

    ADS  Google Scholar 

  44. M. de Roo and P. Wagemans, Gauge matter coupling in N = 4 supergravity, Nucl. Phys. B 262 (1985) 644 [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Ferrara, R. Kallosh and A. Van Proeyen, Conjecture on Hidden Superconformal Symmetry of N = 4 Supergravity, Phys. Rev. D 87 (2013) 025004 [arXiv:1209.0418] [INSPIRE].

    ADS  Google Scholar 

  46. M.T. Grisaru and H. Pendleton, Some Properties of Scattering Amplitudes in Supersymmetric Theories, Nucl. Phys. B 124 (1977) 81 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. P.B. Gilkey, K. Kirsten, D. Vassilevich and A. Zelnikov, Duality symmetry of the p form effective action and supertrace of the twisted de Rham complex, Nucl. Phys. B 648 (2003) 542 [hep-th/0209125] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. D. Vassilevich and A. Zelnikov, Discrete symmetries of functional determinants, Nucl. Phys. B 594 (2001) 501 [hep-th/0009084] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. Z. Bern, L.J. Dixon and D.A. Kosower, Progress in one loop QCD computations, Ann. Rev. Nucl. Part. Sci. 46 (1996) 109 [hep-ph/9602280] [INSPIRE].

    Article  ADS  Google Scholar 

  51. R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop selfdual and N = 4 super Yang-Mills, Phys. Lett. B 394 (1997) 105 [hep-th/9611127] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. Z. Bern and A. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys. B 467 (1996) 479 [hep-ph/9511336] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M.B. Green, J.H. Schwarz and L. Brink, N = 4 Yang-Mills and N = 8 Supergravity as Limits of String Theories, Nucl. Phys. B 198 (1982) 474 [INSPIRE].

    Article  ADS  Google Scholar 

  55. J.J. Carrasco and H. Johansson, Five-Point Amplitudes in N = 4 super-Yang-Mills Theory and N = 8 Supergravity, Phys. Rev. D 85 (2012) 025006 [arXiv:1106.4711] [INSPIRE].

    ADS  Google Scholar 

  56. N.E.J. Bjerrum-Bohr, T. Dennen, R. Monteiro and D. O’Connell, Integrand Oxidation and One-Loop Colour-Dual Numerators in N = 4 Gauge Theory, arXiv:1303.2913 [INSPIRE].

  57. R.H. Boels, R.S. Isermann, R. Monteiro and D. O’Connell, Colour-Kinematics Duality for One-Loop Rational Amplitudes, JHEP 04 (2013) 107 [arXiv:1301.4165] [INSPIRE].

    Article  ADS  Google Scholar 

  58. Z. Bern, L.J. Dixon and D.A. Kosower, On-shell recurrence relations for one-loop QCD amplitudes, Phys. Rev. D 71 (2005) 105013 [hep-th/0501240] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. F.A. Berends, W. Giele and H. Kuijf, On relations between multi-gluon and multigraviton scattering, Phys. Lett. B 211 (1988) 91 [INSPIRE].

    ADS  Google Scholar 

  60. S. Weinberg, Infrared photons and gravitons, Phys. Rev. B 140 (1965) 516.

    Article  MathSciNet  ADS  Google Scholar 

  61. S. Weinberg, Photons and Gravitons in s Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev. B 135 (1964) 1049.

    Article  MathSciNet  ADS  Google Scholar 

  62. Z. Bern and A.K. Grant, Perturbative gravity from QCD amplitudes, Phys. Lett. B 457 (1999) 23 [hep-th/9904026] [INSPIRE].

    ADS  Google Scholar 

  63. Z. Bern, L.J. Dixon, M. Perelstein and J. Rozowsky, Multileg one loop gravity amplitudes from gauge theory, Nucl. Phys. B 546 (1999) 423 [hep-th/9811140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  64. D.C. Dunbar, J.H. Ettle and W.B. Perkins, Constructing Gravity Amplitudes from Real Soft and Collinear Factorisation, Phys. Rev. D 86 (2012) 026009 [arXiv:1203.0198] [INSPIRE].

    ADS  Google Scholar 

  65. Z. Bern, D.C. Dunbar and T. Shimada, String based methods in perturbative gravity, Phys. Lett. B 312 (1993) 277 [hep-th/9307001] [INSPIRE].

    ADS  Google Scholar 

  66. P. Tourkine and P. Vanhove, One-loop four-graviton amplitudes in N = 4 supergravity models, Phys. Rev. D 87 (2013) 045001 [arXiv:1208.1255] [INSPIRE].

    ADS  Google Scholar 

  67. Z. Bern, L.J. Dixon and D. Kosower, A two loop four gluon helicity amplitude in QCD, JHEP 01 (2000) 027 [hep-ph/0001001] [INSPIRE].

    Article  ADS  Google Scholar 

  68. Z. Bern, S. Davies, T. Dennen and Y.-t. Huang, Ultraviolet Cancellations in Half-Maximal Supergravity as a Consequence of the Double-Copy Structure, Phys. Rev. D 86 (2012) 105014 [arXiv:1209.2472] [INSPIRE].

    ADS  Google Scholar 

  69. Z. Bern, S. Davies, T. Dennen and Y.-T. Huang, Absence of Three-Loop Four-Point Divergences in N = 4 Supergravity, Phys. Rev. Lett. 108 (2012) 201301 [arXiv:1202.3423] [INSPIRE].

    Article  ADS  Google Scholar 

  70. Z. Bern, S. Davies, T. Dennen, A.V. Smirnov and V.A. Smirnov, in progress.

  71. H. Romer, Axial anomaly and boundary terms for general spinor fields, Phys. Lett. B 83 (1979) 172 [INSPIRE].

    ADS  Google Scholar 

  72. H. Romer, A universality property of axial anomalies, Phys. Lett. B 101 (1981) 55 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  73. A.S. Schwarz and A.A. Tseytlin, Dilaton shift under duality and torsion of elliptic complex, Nucl. Phys. B 399 (1993) 691 [hep-th/9210015] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  74. M.T. Grisaru, N. Nielsen, W. Siegel and D. Zanon, Energy momentum tensors, supercurrents, (super)traces and quantum equivalence, Nucl. Phys. B 247 (1984) 157 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  75. Z. Bern and L. Dixon, unpublished.

  76. Z. Bern, L.J. Dixon, D. Dunbar, M. Perelstein and J. Rozowsky, On the relationship between Yang-Mills theory and gravity and its implication for ultraviolet divergences, Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [INSPIRE].

    Article  ADS  Google Scholar 

  77. V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Roiban.

Additional information

ArXiv ePrint: 1303.6219

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrasco, J.J.M., Kallosh, R., Roiban, R. et al. On the U(1) duality anomaly and the S-matrix of \( \mathcal{N} \) = 4 supergravity. J. High Energ. Phys. 2013, 29 (2013). https://doi.org/10.1007/JHEP07(2013)029

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)029

Keywords

Navigation