Skip to main content
Log in

Explicit BCJ numerators from pure spinors

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We derive local kinematic numerators for gauge theory tree amplitudes which manifestly satisfy Jacobi identities analogous to color factors. They naturally emerge from the low energy limit of superstring amplitudes computed with the pure spinor formalism. The manifestation of the color-kinematics duality is a consequence of the superstring computation involving no more than (n − 2)! kinematic factors for the full color dressed n point amplitude. The bosonic part of these results describe gluon scattering independent on the number of supersymmetries and captures any NkMHV helicity configuration after dimensional reduction to D = 4 dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  2. D. Oprisa and S. Stieberger, Six gluon open superstring disk amplitude, multiple hypergeometric series and Euler-Zagier sums, hep-th/0509042 [SPIRES].

  3. S.H. Henry Tye and Y. Zhang, Dual identities inside the gluon and the graviton scattering amplitudes, JHEP 06 (2010) 071 [arXiv:1003.1732] [SPIRES].

    Article  ADS  Google Scholar 

  4. R. Medina, F.T. Brandt and F.R. Machado, The open superstring 5-point amplitude revisited, JHEP 07 (2002) 071 [hep-th/0208121] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. L.A. Barreiro and R. Medina, 5-field terms in the open superstring effective action, JHEP 03 (2005) 055 [hep-th/0503182] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  6. S. Stieberger and T.R. Taylor, Amplitude for N-gluon superstring scattering, Phys. Rev. Lett. 97 (2006) 211601 [hep-th/0607184] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Stieberger and T.R. Taylor, Multi-gluon scattering in open superstring theory, Phys. Rev. D 74 (2006) 126007 [hep-th/0609175] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  8. S. Stieberger and T.R. Taylor, Supersymmetry relations and MHV amplitudes in superstring theory, Nucl. Phys. B 793 (2008) 83 [arXiv:0708.0574] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Stieberger and T.R. Taylor, Complete six-gluon disk amplitude in superstring theory, Nucl. Phys. B 801 (2008) 128 [arXiv:0711.4354] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  10. S.J. Parke and T.R. Taylor, An amplitude for n gluon scattering, Phys. Rev. Lett. 56 (1986) 2459 [SPIRES].

    Article  ADS  Google Scholar 

  11. C.R. Mafra, Towards field theory amplitudes from the cohomology of pure spinor superspace, JHEP 11 (2010) 096 [arXiv:1007.3639] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  12. E. Witten, Twistor-like transform in ten-dimensions, Nucl. Phys. B 266 (1986) 245 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  13. N. Berkovits, Super-Poincaré covariant quantization of the superstring, JHEP 04 (2000) 018 [hep-th/0001035] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  14. J.P. Harnad and S. Shnider, Constraints and field equations for ten-dimensional super Yang-Mills theory, Commun. Math. Phys. 106 (1986) 183 [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. P.A. Grassi and L. Tamassia, Vertex operators for closed superstrings, JHEP 07 (2004) 071 [hep-th/0405072] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. G. Policastro and D. Tsimpis, R 4 , purified, Class. Quant. Grav. 23 (2006) 4753 [hep-th/0603165] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. C.R. Mafra, Simplifying the tree-level superstring massless five-point amplitude, JHEP 01 (2010) 007 [arXiv:0909.5206] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  18. C.R. Mafra, Pure spinor superspace identities for massless four-point kinematic factors, JHEP 04 (2008) 093 [arXiv:0801.0580] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  19. C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, A recursive method for SYM n-point tree amplitudes, Phys. Rev. D 83 (2011) 126012 [arXiv:1012.3981] [SPIRES].

    ADS  Google Scholar 

  20. C.R. Mafra, O. Schlotterer, S. Stieberger and D. Tsimpis, Six open string disk amplitude in pure spinor superspace, Nucl. Phys. B 846 (2011) 359 [arXiv:1011.0994] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. W. Siegel, Classical superstring mechanics, Nucl. Phys. B 263 (1986) 93 [SPIRES].

    Article  ADS  Google Scholar 

  22. C.R. Mafra, PSS: a FORM program to evaluate Pure Spinor Superspace expressions, arXiv:1007.4999 [SPIRES].

  23. Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. N. Berkovits and C.R. Mafra, Some superstring amplitude computations with the non-minimal pure spinor formalism, JHEP 11 (2006) 079 [hep-th/0607187] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  25. F.A. Berends and W.T. Giele, Recursive calculations for processes with n gluons, Nucl. Phys. B 306 (1988) 759 [SPIRES].

    Article  ADS  Google Scholar 

  26. J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].

  27. M. Tentyukov and J.A.M. Vermaseren, The multithreaded version of FORM, Comput. Phys. Commun. 181 (2010) 1419 [hep-ph/0702279] [SPIRES].

    Article  ADS  Google Scholar 

  28. R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders, Nucl. Phys. B 312 (1989) 616 [SPIRES].

    Article  ADS  Google Scholar 

  29. N.E.J. Bjerrum-Bohr, P.H. Damgaard and P. Vanhove, Minimal basis for gauge theory amplitudes, Phys. Rev. Lett. 103 (2009) 161602 [arXiv:0907.1425] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  30. S. Stieberger, Open & closed vs. pure open string disk amplitudes, arXiv:0907.2211 [SPIRES].

  31. N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, Monodromy and Jacobi-like relations for color-ordered amplitudes, JHEP 06 (2010) 003 [arXiv:1003.2403] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  32. C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-point superstring disk amplitude I. Pure spinor computation, arXiv:1106.2645 [SPIRES].

  33. C.R. Mafra, O. Schlotterer and S. Stieberger, Complete N-point superstring disk amplitude II. Amplitude and hypergeometric function structure, arXiv:1106.2646 [SPIRES].

  34. D. Vaman and Y.-P. Yao, Constraints and generalized gauge transformations on tree-level gluon and graviton amplitudes, JHEP 11 (2010) 028 [arXiv:1007.3475] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  35. N. Berkovits, ICTP lectures on covariant quantization of the superstring, hep-th/0209059 [SPIRES].

  36. O.A. Bedoya and N. Berkovits, GGI lectures on the pure spinor formalism of the superstring, arXiv:0910.2254 [SPIRES].

  37. M. Kiermaier, Gravity as the square of gauge theory, talk at Amplitudes 2010, http://www.strings.ph.qmul.ac.uk/∼theory/Amplitudes2010/Talks/MK2010.pdf, Queen Mary University of London, London U.K. (2010).

  38. N.E.J. Bjerrum-Bohr, P.H. Damgaard, T. Sondergaard and P. Vanhove, The momentum kernel of gauge and gravity theories, JHEP 01 (2011) 001 [arXiv:1010.3933] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  39. P.S. Howe, Pure spinors lines in superspace and ten-dimensional supersymmetric theories, Phys. Lett. B 258 (1991) 141 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  40. N. Arkani-Hamed, F. Cachazo, C. Cheung and J. Kaplan, The S-matrix in twistor space, JHEP 03 (2010) 110 [arXiv:0903.2110] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. Z. Bern, J.J. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, Amplitudes and ultraviolet behavior of N = 8 supergravity, arXiv:1103.1848 [SPIRES].

  42. J. Polchinski, String theory. Vol. 1: an introduction to the bosonic string, Cambridge University Press, Cambridge U.K. (1998) [SPIRES].

    Google Scholar 

  43. J.E. Paton and H.-M. Chan, Generalized Veneziano model with isospin, Nucl. Phys. B 10 (1969) 516 [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos R. Mafra.

Additional information

ArXiv ePrint: 1104.5224

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mafra, C.R., Schlotterer, O. & Stieberger, S. Explicit BCJ numerators from pure spinors. J. High Energ. Phys. 2011, 92 (2011). https://doi.org/10.1007/JHEP07(2011)092

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2011)092

Keywords

Navigation