Skip to main content

Advertisement

Log in

Sustainable synthesis of silver nanoparticles using various biological sources and waste materials: a review

  • Review
  • Published:
Emergent Materials Aims and scope Submit manuscript

A Correction to this article was published on 04 November 2021

This article has been updated

Abstract

Recently, with the developments in the field of nanotechnology, silver nanoparticles (AgNPs) have become one of the most fascinated nanoparticles by virtue of their multifarious applications in wide array of disciplines. AgNPs hold unique physical, chemical, and biological properties which determine their suitability in these applications. The synthesis of AgNPs using the principles of green chemistry in contrast to other methods is not only eco-friendly and cost-effective, but the nanoparticles thus formed are also biocompatible. AgNPs produced by such means express certain unique characteristics which allow them to be used as antimicrobial, antifungal, antiviral, and anticancer agents. Moreover, natural catalytic action for degradation of pollutants, usefulness in treatment of diabetes-related complications, and wound healing properties make AgNPs even more valuable. A lot of work has been done on AgNPs in the past, hence a comprehensive review article will be more beneficial for the readers and futuristic work. Therefore, the present review article is aimed to provide a detailed study of various biological methodologies employed in synthesis of AgNPs, their characteristics, and applications in various fields.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

source for synthesis of AgNPs

Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Y. Ohara, K. Akazawa, K. Shibata, T. Hirota, Y. Kodama, T. Amemiya, J. Wang, T. Yamaguchi, Seed-mediated gold nanoparticle synthesis via photochemical reaction of benzoquinone. Colloids Surfaces A Physicochem Eng Asp 586, 124209 (2020). https://doi.org/10.1016/j.colsurfa.2019.124209

    Article  CAS  Google Scholar 

  2. T.A. Saleh, Nanomaterials: classification, properties, and environmental toxicities. Environ Technol Innov 20, 101067 (2020). https://doi.org/10.1016/j.eti.2020.101067

    Article  CAS  Google Scholar 

  3. Z. Yang, D. Zhang, D. Wang, Carbon monoxide gas sensing properties of metal-organic frameworks-derived tin dioxide nanoparticles/molybdenum diselenide nanoflowers. Sensors Actuators, B Chem 304, 127369 (2020). https://doi.org/10.1016/j.snb.2019.127369

    Article  CAS  Google Scholar 

  4. G. Song, M. Kenney, Y.S. Chen, X. Zheng, Y. Deng, Z. Chen, S.X. Wang, S.S. Gambhir, R.J. DaiH, Carbon-coated FeCo nanoparticles as sensitive magnetic-particle-imaging tracers with photothermal and magnetothermal properties. Nat Biomed Eng 4, 325–334 (2020). https://doi.org/10.1038/s41551-019-0506-0

    Article  CAS  Google Scholar 

  5. Y. Xu, H. De Keersmaecker, K. Braeckmans, S. De Smedt, P.D. Cani, V. Préat, A. Beloqui, Targeted nanoparticles towards increased L cell stimulation as a strategy to improve oral peptide delivery in incretin-based diabetes treatment. Biomaterials 255, 120209 (2020). https://doi.org/10.1016/j.biomaterials.2020.120209

    Article  CAS  Google Scholar 

  6. K. Shanmugaraj, A.S. Sharma, T. Sasikumar, R.V. Mangalaraja, M. Ilanchelian, Insight into the binding and conformational changes of hemoglobin/lysozyme with bimetallic alloy nanoparticles using various spectroscopic approaches. J Mol Liq 300, 111747 (2020). https://doi.org/10.1016/j.molliq.2019.111747

    Article  CAS  Google Scholar 

  7. M. Bilal, H.M.N. Iqbal, New insights on unique features and role of nanostructured materials in cosmetics. Cosmetics 7, 24 (2020). https://doi.org/10.3390/cosmetics7020024

    Article  CAS  Google Scholar 

  8. H.Y. Tang, Q. Huang, Y.L. Wang, X.Q. Yang, D.X. Su, S. He, J.C. Tan, Q.Z. Zeng, Y. Yuan, Development, structure characterization and stability of food grade selenium nanoparticles stabilized by tilapia polypeptides. J Food Eng 275, 109878 (2020). https://doi.org/10.1016/j.jfoodeng.2019.109878

    Article  CAS  Google Scholar 

  9. T.C. Coutinho, P.W. Tardioli, C.S. Farinas, Phytase Immobilization on hydroxyapatite nanoparticles improves its properties for use in animal feed. Appl Biochem Biotechnol 190, 270–292 (2020). https://doi.org/10.1007/s12010-019-03116-9

    Article  CAS  Google Scholar 

  10. S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998). https://doi.org/10.1038/29954

    Article  CAS  Google Scholar 

  11. S.H. Ko, I. Park, H. Pan, C.P. Grigoropoulos, A.P. Pisano, C.K. Luscombe, J.M. Fréchet, Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication. Nano Lett 7, 1869–1877 (2007). https://doi.org/10.1021/nl070333v

    Article  CAS  Google Scholar 

  12. A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Mater. Sustain. Energy 148–159 (2010).https://doi.org/10.1007/978-3-662-56364-9_18

  13. W.C. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han, S. Nie, Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13, 40–46 (2002). https://doi.org/10.1016/S0958-1669(02)00282-3

    Article  CAS  Google Scholar 

  14. G. Franci, A. Falanga, S. Galdiero, L. Palomba, M. Rai, G. Morelli, M. Galdiero, Silver nanoparticles as potential antibacterial agents. Molecules 20, 8856–8874 (2015). https://doi.org/10.3390/molecules20058856

    Article  CAS  Google Scholar 

  15. S.H. Jeong, S.Y. Yeo, S.C. Yi, The effect of filler particle size on the antibacterialproperties of compounded polymer / silver fibers. J Mater Sci 40, 5407–5411 (2005). https://doi.org/10.1007/s10853-005-4339-8

    Article  CAS  Google Scholar 

  16. H.D. Beyene, A.A. Werkneh, H.K. Bezabh, T.G. Ambaye, Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain Mater Technol 13, 18–23 (2017). https://doi.org/10.1016/j.susmat.2017.08.001

    Article  CAS  Google Scholar 

  17. H.M.M. Ibrahim, ScienceDirect Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci. 1–11 (2015).https://doi.org/10.1016/j.jrras.2015.01.007

  18. H.M. Gong, L. Zhou, X.R. Su, S. Xiao, S.D. Liu, Q.Q. Wang, Illuminating dark plasmons of silver nanoantenna rings to enhance exciton-plasmon interactions. Adv Funct Mater 19, 298–303 (2009). https://doi.org/10.1002/adfm.200801151

    Article  CAS  Google Scholar 

  19. Y.A. Krutyakov, A.A. Kudrinskiy, A.Y. Olenin, G.V. Lisichkin, Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev 77, 233–257 (2008). https://doi.org/10.1070/rc2008v077n03abeh003751

    Article  CAS  Google Scholar 

  20. X.F. Zhang, Z.G. Liu, W. Shen, S. Gurunathan, Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 17 (2016).https://doi.org/10.3390/ijms17091534

  21. A.A. Alswat, A.M. Bin, T.A. Saleh, M.Z. Hussein, N.A. Ibrahim, Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite. Mater Sci Eng C 68, 505–511 (2016). https://doi.org/10.1016/j.msec.2016.06.028

    Article  CAS  Google Scholar 

  22. A.A. Alswat, A.M. Bin, M.Z. Hussein, N.A. Ibrahim, T.A. Saleh, Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. J Mater Sci Technol 33, 889–896 (2017). https://doi.org/10.1016/j.jmst.2017.03.015

    Article  CAS  Google Scholar 

  23. E. Kotb, A.A. Ahmed, T.A. Saleh, A.M. Ajeebi, M.S. Al- Gharsan, N.F. Aldahmash, Pseudobactins bounded iron nanoparticles for control of an antibiotic-resistant Pseudomonas aeruginosa ryn32. Biotechnol Prog 36, 1–8 (2020). https://doi.org/10.1002/btpr.2907

    Article  CAS  Google Scholar 

  24. T.M. Abdelghany, A.M.H. Al-Rajhi, M.A. Al Abboud, M.M. Alawlaqi, A.G. Magdah, E.A. Helmy, A.S. Mabrouk, Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. a review. Bionanoscience 8, 5–16 (2018). https://doi.org/10.1007/s12668-017-0413-3

    Article  Google Scholar 

  25. L.R. Khot, S. Sankaran, J.M. Maja, R. Ehsani, E.W. Schuster, Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35, 64–70 (2012). https://doi.org/10.1016/j.cropro.2012.01.007

    Article  CAS  Google Scholar 

  26. S. Prabhu, E.K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2, 1–10 (2012). https://doi.org/10.1186/2228-5326-2-32

    Article  Google Scholar 

  27. G.V. Arroyo, A.T. Madrid, A.F. Gavilanes, B. Naranjo, A. Debut, M.T. Arias, Y. Angulo, Green synthesis of silver nanoparticles for application in cosmetics. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng 55, 1304–1320 (2020). https://doi.org/10.1080/10934529.2020.1790953

    Article  CAS  Google Scholar 

  28. A.C. Paiva-Santos, A.M. Herdade, C. Guerra, D. Peixoto, M. Pereira-Silva, M. Zeinali, F. Mascarenhas-Melo, A. Paranhos, F. Veiga, Plant-mediated green synthesis of metal-based nanoparticles for dermopharmaceutical and cosmetic applications. Int J Pharm 597, 120311 (2021). https://doi.org/10.1016/J.IJPHARM.2021.120311

    Article  CAS  Google Scholar 

  29. A. Ahmeda, A. Zangeneh, M.M. Zangeneh, Green synthesis and chemical characterization of gold nanoparticle synthesized using Camellia sinensis leaf aqueous extract for the treatment of acute myeloid leukemia in comparison to daunorubicin in a leukemic mouse model. Appl Organomet Chem 34, 1–13 (2020). https://doi.org/10.1002/aoc.5290

    Article  CAS  Google Scholar 

  30. T. Zahra, K.S. Ahmad, Structural, optical and electrochemical studies of organo-templated wet synthesis of cubic shaped nickel oxide nanoparticles. Optik (Stuttg) 205, 164241 (2020). https://doi.org/10.1016/j.ijleo.2020.164241

    Article  CAS  Google Scholar 

  31. A.A. Zezin, D.I. Klimov, E.A. Zezina, K.V. Mkrtchyan, V. Feldman, Controlled radiation-chemical synthesis of metal polymer nanocomposites in the films of interpolyelectrolyte complexes: principles, prospects and implications. Radiat.Phys. Chem. 169 (2020).https://doi.org/10.1016/j.radphyschem.2018.11.030

  32. R. Riedel, N. Mahr, C. Yao, A. Wu, F. Yang, N. Hampp, Synthesis of gold-silica core-shell nanoparticles by pulsed laser ablation in liquid and their physico-chemical properties towards photothermal cancer therapy. Nanoscale 12, 3007–3018 (2020). https://doi.org/10.1039/c9nr07129f

    Article  CAS  Google Scholar 

  33. K.B. Narayanan, N. Sakthivel, Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156, 1–13 (2010). https://doi.org/10.1016/j.cis.2010.02.001

    Article  CAS  Google Scholar 

  34. L. Salvioni, E. Galbiati, V. Collico, G. Alessio, S. Avvakumova, F. Corsi, P. Tortora, D. Prosperi, M. Colombo, Negatively charged silver nanoparticles with potent antibacterial activity and reduced toxicity for pharmaceutical preparations. Int J Nanomedicine 12, 2517–2530 (2017). https://doi.org/10.2147/IJN.S127799

    Article  CAS  Google Scholar 

  35. A. Seaton, L. Tran, R. Aitken, K. Donaldson, Nanoparticles, human health hazard and regulation. J. R. Soc. Interface 7 (2010).https://doi.org/10.1098/rsif.2009.0252.focus

  36. F.H. Khan, Chemical hazards of nanoparticles to human and environment (A review). Orient J Chem 29(1399), 1408 (2013). https://doi.org/10.13005/ojc/290415

    Article  CAS  Google Scholar 

  37. S. Sanjay Makone, S. Nivruttirao Niwadange, Green chemistry alternatives for sustainable development in organic synthesis. Int Adv Res J Sci Eng Technol 3, 113–115 (2016). https://doi.org/10.17148/IARJSET.2016.3621

    Article  Google Scholar 

  38. Y. Park, A new paradigm shift for the green synthesis of antibacterial silver nanoparticles utilizing plant extracts. Toxicol Res 30, 169–178 (2014). https://doi.org/10.5487/TR.2014.30.3.169

    Article  CAS  Google Scholar 

  39. Q. Sun, X. Cai, J. Li, M. Zheng, Z. Chen, C.P. Yu, Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surfaces A Physicochem Eng Asp 444, 226–231 (2014). https://doi.org/10.1016/j.colsurfa.2013.12.065

    Article  CAS  Google Scholar 

  40. V. Kumar, D.K. Singh, S. Mohan, R.K. Gundampati, S.H. Hasan, Photoinduced green synthesis of silver nanoparticles using aqueous extract of Physalis angulata and its antibacterial and antioxidant activity. J Environ Chem Eng 5, 744–756 (2017). https://doi.org/10.1016/j.jece.2016.12.055

    Article  CAS  Google Scholar 

  41. A. Jebali, F. Ramezani, B. Kazemi, Biosynthesis of silver nanoparticles by Geotricum sp. J Clust Sci 22, 225–232 (2011). https://doi.org/10.1007/s10876-011-0375-5

    Article  CAS  Google Scholar 

  42. A. Sivaraj, V. Kumar, R. Sunder, K. Parthasarathy, G. Kasivelu, Commercial yeast extracts mediated green synthesis of silver chloride nanoparticles and their anti-mycobacterial activity. J Clust Sci 31, 287–291 (2020). https://doi.org/10.1007/s10876-019-01626-4

    Article  CAS  Google Scholar 

  43. K.R. Aadil, N. Pandey, S.I. Mussatto, H. Jha, Green synthesis of silver nanoparticles using acacia lignin, their cytotoxicity, catalytic, metal ion sensing capability and antibacterial activity. J Environ Chem Eng 7, 103296 (2019). https://doi.org/10.1016/j.jece.2019.103296

    Article  CAS  Google Scholar 

  44. G. Benelli, C.M. Lukehart, Applications of green-synthesized nanoparticles in pharmacology, parasitology and entomology. J Clust Sci 28, 1–2 (2017). https://doi.org/10.1007/s10876-017-1165-5

    Article  CAS  Google Scholar 

  45. C. Gordon-Falconí, M.F. Iannone, M.S. Zawoznik, L. Cumbal, A. Debut, M.D. Groppa, Synthesis of silver nanoparticles with remediative potential using discarded yerba mate: an eco-friendly approach. J Environ Chem Eng 8, 104425 (2020). https://doi.org/10.1016/j.jece.2020.104425

    Article  CAS  Google Scholar 

  46. A. Miri, M. Darroudi, R. Entezari, M. Sarani, Biosynthesis of gold nanoparticles using Prosopis farcta extract and its in vitro toxicity on colon cancer cells. Res Chem Intermed 44, 3169–3177 (2018). https://doi.org/10.1007/s11164-018-3299-y

    Article  CAS  Google Scholar 

  47. A. Rahi, N. Sattarahmady, H. Heli, Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms. Sci Rep 5, 18060 (2015). https://doi.org/10.1038/srep18060

    Article  CAS  Google Scholar 

  48. N. Sattarahmady, G.H. Tondro, M. Gholchin, H. Heli, Gold nanoparticles biosensor of Brucella spp. genomic DNA: visual and spectrophotometric detections. Biochem Eng J 97, 1–7 (2015). https://doi.org/10.1016/j.bej.2015.01.010

    Article  CAS  Google Scholar 

  49. N. Sattarahmady, A. Rahi, H. Heli, A signal-on built in-marker electrochemical aptasensor for human prostate-specific antigen based on a hairbrush-like gold nanostructure. Sci Rep 7, 3–10 (2017). https://doi.org/10.1038/s41598-017-11680-5

    Article  CAS  Google Scholar 

  50. M. Khatami, H. Alijani, I. Sharifi, F. Sharifi, S. Pourseyedi, S. Kharazi, M.A. Lima Nobre, M. Khatami, Leishmanicidal activity of biogenic Fe3O4 nanoparticles. Sci. Pharm. 85 (2017).https://doi.org/10.3390/scipharm85040036

  51. F. Sharifi, F. Sharififar, I. Sharifi, H.Q. Alijani, M. Khatami, Cytotoxicity, leishmanicidal, and antioxidant activity of biosynthesised zinc sulphide nanoparticles using Phoenix dactylifera. IET Nanobiotechnol. 12, 1–6 (2018). https://doi.org/10.1049/iet-nbt.2017.0204

    Article  Google Scholar 

  52. M. Darroudi, M. Sarani, R. Kazemi Oskuee, A.K. Zak, M.S. Amiri, Nanoceria: Gum mediated synthesis and in vitro viability assay. Ceram Int 40, 2863–2868 (2014). https://doi.org/10.1016/j.ceramint.2013.10.026

    Article  CAS  Google Scholar 

  53. P. Raji, A.V. Samrot, D. Keerthana, S. Karishma, Antibacterial activity of alkaloids, flavonoids, saponins and tannins mediated green synthesised silver nanoparticles against Pseudomonas aeruginosa and Bacillus subtilis. J Clust Sci 30, 881–895 (2019). https://doi.org/10.1007/s10876-019-01547-2

    Article  CAS  Google Scholar 

  54. M. Faraday, The Bakerian Lecture. —experimental relations of gold (and other metals) to light. Philos Trans R Soc London 147, 145–181 (1857). https://doi.org/10.1098/rstl.1857.0011

    Article  Google Scholar 

  55. B. Nowack, H.F. Krug, M. Height, 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 45, 1177–1183 (2011). https://doi.org/10.1021/es103316q

    Article  CAS  Google Scholar 

  56. R.P. Feynmam, There’s plenty of room at the bottom. Eng. Sci. Mag. 23 (1960).

  57. M.C. Lea, On allotropic forms of silver. Am J Sci s3-38, 47–49 (1889). https://doi.org/10.2475/ajs.s3-38.223.47

    Article  Google Scholar 

  58. K. Boese, Über Collargol, seine Anwendung und seine Erfolge in der Chirurgie und Gynäkologie. Dtsch Zeitschrift für Chir 163, 62–84 (1921). https://doi.org/10.1007/BF02801881

    Article  Google Scholar 

  59. Z.V. Moudry, Process of producing oligodynamic metal biocides. U S Pat Off 2(927), 052 (1953). https://doi.org/10.1145/178951.178972

    Article  Google Scholar 

  60. M.L. Green, E.P. Gusev, R. Degraeve, E.L. Garfunkel, Ultrathin (<4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits. J Appl Phys 90, 2057–2121 (2001). https://doi.org/10.1063/1.1385803

    Article  CAS  Google Scholar 

  61. S.H. Lee, B.H. Jun, Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20, 1–23 (2019). https://doi.org/10.3390/ijms20040865

    Article  CAS  Google Scholar 

  62. A.M. El-Khatib, M.S. Badawi, Z.F. Ghatass, M.M. Mohamed, M. Elkhatib, Synthesize of silver nanoparticles by arc discharge method using two different rotational electrode shapes. J Clust Sci 29, 1169–1175 (2018). https://doi.org/10.1007/s10876-018-1430-2

    Article  CAS  Google Scholar 

  63. A.A. Yaqoob, K. Umar, M.N.M. Ibrahim, Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl Nanosci 10, 1369–1378 (2020). https://doi.org/10.1007/s13204-020-01318-w

    Article  CAS  Google Scholar 

  64. M. Brust, C.J. Kiely, Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surfaces A Physicochem Eng Asp 202, 175–186 (2002). https://doi.org/10.1016/S0927-7757(01)01087-1

    Article  CAS  Google Scholar 

  65. S. Iravani, H. Korbekandi, S.V. Mirmohammadi, B. Zolfaghari, Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9, 385–406 (2014)

    CAS  Google Scholar 

  66. M. Kamran, M. Haroon, S.A. Popoola, A.R. Almohammedi, A.A. Al-Saadi, T.A. Saleh, Characterization of valeric acid using substrate of silver nanoparticles with SERS. J Mol Liq 273, 536–542 (2019). https://doi.org/10.1016/j.molliq.2018.10.037

    Article  CAS  Google Scholar 

  67. T.A. Saleh, M.M. Al-Shalalfeh, A.A. Al-Saadi, Silver nanoparticles for detection of methimazole by surface-enhanced Raman spectroscopy. Mater Res Bull 91, 173–178 (2017). https://doi.org/10.1016/j.materresbull.2017.03.041

    Article  CAS  Google Scholar 

  68. T.A. Saleh, M.M. Al-Shalalfeh, A.A. Al-Saadi, Silver loaded graphene as a substrate for sensing 2-thiouracil using surface-enhanced Raman scattering. Sensors Actuators, B Chem 254, 1110–1117 (2018). https://doi.org/10.1016/j.snb.2017.07.179

    Article  CAS  Google Scholar 

  69. P. Mendis, R.M. De Silva, K.M.N. De Silva, L.A. Wijenayaka, K. Jayawardana, M. Yan, Nanosilver rainbow: a rapid and facile method to tune different colours of nanosilver through the controlled synthesis of stable spherical silver nanoparticles. RSC Adv 6, 48792–48799 (2016). https://doi.org/10.1039/c6ra08336f

    Article  CAS  Google Scholar 

  70. G.I. Mantanis, C. Lykidis, A.N. Papadopoulos, Durability of accoya wood in ground stake testing after 10 years of exposure in Greece. Polymers (Basel) 12, 1638 (2020). https://doi.org/10.3390/POLYM12081635

    Article  CAS  Google Scholar 

  71. P. Prosposito, L. Burratti, A. Bellingeri, G. Protano, C. Faleri, I. Corsi, C. Battocchio, G. Iucci, L. Tortora, V. Secchi, S. Franchi, Bifunctionalized silver nanoparticles as Hg2+ plasmonic sensor in water: synthesis, characterizations, and ecosafety. Nanomaterials 9 (2019).https://doi.org/10.3390/nano9101353

  72. X.L. Cao, C. Cheng, Y.L. Ma, C.S. Zhao, Preparation of silver nanoparticles with antimicrobial activities and the researches of their biocompatibilities. J Mater Sci Mater Med 21, 2861–2868 (2010). https://doi.org/10.1007/s10856-010-4133-2

    Article  CAS  Google Scholar 

  73. I. Schiesaro, L. Burratti, C. Meneghini, I. Fratoddi, P. Prosposito, J. Lim, C. Scheu, I. Venditti, G. Iucci, C. Battocchio, Hydrophilic silver nanoparticles for Hg(II) detection in water: direct evidence for mercury-silver interaction. J Phys Chem C 124, 25975–25983 (2020). https://doi.org/10.1021/acs.jpcc.0c06951

    Article  CAS  Google Scholar 

  74. G. Vasquez, Y. Hernández, Y. Coello, Portable low-cost instrumentation for monitoring Rayleigh scattering from chemical sensors based on metallic nanoparticles. Sci Rep 8, 22–25 (2018). https://doi.org/10.1038/s41598-018-33271-8

    Article  CAS  Google Scholar 

  75. I. Fratoddi, C. Battocchio, G. Iucci, D. Catone, A. Cartoni, A. Paladini, P. O’Keeffe, S. Nappini, S. Cerra, I. Venditti, Silver nanoparticles functionalized by fluorescein isothiocyanate or rhodamine b isothiocyanate: fluorescent and plasmonic materials. Appl. Sci. 11 (2021).https://doi.org/10.3390/app11062472

  76. P. Kainourgios, L.A. Tziveleka, I.A. Kartsonakis, E. Ioannou, V. Roussis, C.A. Charitidis, Silver nanoparticles grown on cross-linked poly (Methacrylic acid) microspheres: synthesis, characterization, and antifungal activity evaluation. Chemosensors 9 (2021).https://doi.org/10.3390/chemosensors9070152

  77. F. Rinaldi, E. Del Favero, J. Moeller, P.N. Hanieh, D. Passeri, M. Rossi, L. Angeloni, I. Venditti, C. Marianecci, M. Carafa, I. Fratoddi, Hydrophilic silver nanoparticles loaded into niosomes: Physical–chemical characterization in view of biological applications. Nanomaterials 9 (2019).https://doi.org/10.3390/nano9081177

  78. E.A. Kukushkina, S.I. Hossain, M.C. Sportelli, N. Ditaranto, R.A. Picca, N. Cioffi, Ag-based synergistic antimicrobial composites. A critical review.Nanomaterials 11 (2021).https://doi.org/10.3390/nano11071687

  79. A. Ross, M. Muñoz, B.H. Rotstein, E.J. Suuronen, E.I. Alarcon, A low cost and open access system for rapid synthesis of large volumes of gold and silver nanoparticles. Sci Rep 11, 5420 (2021). https://doi.org/10.1038/s41598-021-84896-1

    Article  CAS  Google Scholar 

  80. S. Naqvi, H. Anwer, S.W. Ahmed, A. Siddiqui, M.R. Shah, S. Khaliq, A. Ahmed, S.A. Ali, Synthesis and characterization of maltol capped silver nanoparticles and their potential application as an antimicrobial agent and colorimetric sensor for cysteine. Spectrochim Acta - Part A Mol Biomol Spectrosc 229, 118002 (2020). https://doi.org/10.1016/j.saa.2019.118002

    Article  CAS  Google Scholar 

  81. A. Roy, O. Bulut, S. Some, A.K. Mandal, M.D. Yilmaz, Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9, 2673–2702 (2019). https://doi.org/10.1039/c8ra08982e

    Article  CAS  Google Scholar 

  82. M. Saravanan, H. Vahidi, D. Medina Cruz, A. Vernet-Crua, E. Mostafavi, R. Stelmach, T.J. Webster, M.A. Mahjoub, M. Rashedi, H. Barabadi, Emerging antineoplastic biogenic gold nanomaterials for breast cancer therapeutics: a systematic review. Int J Nanomedicine 15, 3577–3595 (2020). https://doi.org/10.2147/IJN.S240293

    Article  CAS  Google Scholar 

  83. J. Zhu, S. Liu, O. Palchik, Y. Koltypin, A. Gedanken, Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir 16, 6396–6399 (2000). https://doi.org/10.1021/la991507u

    Article  CAS  Google Scholar 

  84. S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7, 17–28 (2016). https://doi.org/10.1016/j.jare.2015.02.007

    Article  CAS  Google Scholar 

  85. M.L. Hitchman, R.A. Spackman, N.C. Ross, C. Agra, Disposal methods for chlorinated aromatic waste. Chem Soc Rev 24, 423–430 (1995). https://doi.org/10.1039/CS9952400423

    Article  CAS  Google Scholar 

  86. F.P. Camargo, P. Sérgio Tonello, A.C.A. dos Santos, I.C.S. Duarte, Removal of toxic metals from sewage sludge through chemical, physical, and biological treatments—a review. Water Air Soil Pollut.227 (2016).https://doi.org/10.1007/s11270-016-3141-3

  87. C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, M. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J Environ Chem Eng 5, 2782–2799 (2017). https://doi.org/10.1016/j.jece.2017.05.029

    Article  CAS  Google Scholar 

  88. T. Shibamoto, A. Yasuhara, T. Katami, Dioxin formation from waste incineration. Rev Environ Contam Toxicol 190, 1–41 (2007). https://doi.org/10.1007/978-0-387-36903-7_1

    Article  CAS  Google Scholar 

  89. L. Pourzahedi, EMJ, , Comparative life cycle assessment of silver nanoparticle synthesis routes. Environ Sci Nano 2, 361–369 (2015). https://doi.org/10.4135/9781446247501.n1321

    Article  CAS  Google Scholar 

  90. H. Barabadi, T.J. Webster, H. Vahidi, H. Sabori, K.D. Kamali, F.J. Shoushtari, M.A. Mahjoub, M. Rashedi, E. Mostafavi, D.M. Cruz, O. Hosseini, Green nanotechnology based gold nanomaterials for hepatic cancer therapeutics a systematic review. Iran J Pharm Res 19, 3–17 (2020). https://doi.org/10.22037/ijpr.2020.113820.14504

    Article  CAS  Google Scholar 

  91. H. Barabadi, F. Mojab, H. Vahidi, B. Marashi, N. Talank, O. Hosseini, M. Saravanan, Green synthesis, characterization, antibacterial and biofilm inhibitory activity of silver nanoparticles compared to commercial silver nanoparticles. Inorg Chem Commun 129, 108647 (2021). https://doi.org/10.1016/J.INOCHE.2021.108647

    Article  CAS  Google Scholar 

  92. M. Saravanan, H. Barabadi, B. Ramachandran, G. Venkatraman, K. Ponmurugan, Emerging plant-based anti-cancer green nanomaterials in present scenario. in Comprehensive Analytical Chemistry, vol. 87 (Elsevier, 2019), pp. 291–318

  93. H. Barabadi, A. Mohammadzadeh, H. Vahidi, M. Rashedi, M. Saravanan, N. Talank, A. Alizadeh, Penicillium chrysogenum-derived silver nanoparticles: exploration of their antibacterial and biofilm inhibitory activity against the standard and pathogenic acinetobacter baumannii compared to tetracycline. J. Clust. Sci. 5 (2021).https://doi.org/10.1007/s10876-021-02121-5

  94. M. Saravanan, H. Barabadi, H. Vahidi, Green nanotechnology: isolation of bioactive molecules and modified approach of biosynthesis. Biog Nanoparticles Cancer Theranostics 101–122 (2021).https://doi.org/10.1016/B978-0-12-821467-1.00005-7

  95. C.S. Raota, A.F. Cerbaro, M. Salvador, A.P. Delamare, S. Echeverrigaray, C.J. da Silva, T.B. da Silva, M. Giovanela, Green synthesis of silver nanoparticles using an extract of Ives cultivar (Vitis labrusca) pomace: characterization and application in wastewater disinfection. J Environ Chem Eng 7, 103383 (2019). https://doi.org/10.1016/j.jece.2019.103383

    Article  CAS  Google Scholar 

  96. H. He, G. Tao, Y. Wang, R. Cai, P. Guo, L. Chen, H. Zuo, P. Zhao, Q. Xia, In situ green synthesis and characterization of sericin-silver nanoparticle composite with effective antibacterial activity and good biocompatibility. Mater Sci Eng C 80, 509–516 (2017). https://doi.org/10.1016/j.msec.2017.06.015

    Article  CAS  Google Scholar 

  97. M.C. Moulton, L.K. Braydich-Stolle, M.N. Nadagouda, S. Kunzelman, S.M. Hussain, R.S. Varma, Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale 2, 763–770 (2010). https://doi.org/10.1039/c0nr00046a

    Article  CAS  Google Scholar 

  98. M. Ahamed, M.A. Majeed Khan, M.K.J. Siddiqui, M.S. AlSalhi, S.A. Alrokayan, Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles. Phys E Low-Dimensional Syst Nanostructures 43, 1266–1271 (2011). https://doi.org/10.1016/j.physe.2011.02.014

    Article  CAS  Google Scholar 

  99. A. Kumar, P.K. Vemula, P.M. Ajayan, G. John, Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7, 236–241 (2008). https://doi.org/10.1038/nmat2099

    Article  CAS  Google Scholar 

  100. R. Amooaghaie, M.R. Saeri, M. Azizi, Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol Environ Saf 120, 400–408 (2015). https://doi.org/10.1016/j.ecoenv.2015.06.025

    Article  CAS  Google Scholar 

  101. H. Barabadi, H. Vahidi, K. Damavandi Kamali, M. Rashedi, O. Hosseini, A.R. Ghomi, M. Saravanan, Emerging theranostic silver nanomaterials to combat colorectal cancer: a systematic review. J Clust Sci 31, 311–321 (2020). https://doi.org/10.1007/s10876-019-01668-8

    Article  CAS  Google Scholar 

  102. H. Barabadi, H. Vahidi, K. Damavandi Kamali, O. Hosseini, M.A. Mahjoub, M. Rashedi, F.J. Shoushtari, M. Saravanan, Emerging theranostic gold nanomaterials to combat lung cancer: a systematic review. J Clust Sci 31, 323–330 (2020). https://doi.org/10.1007/s10876-019-01650-4

    Article  CAS  Google Scholar 

  103. A. Khatua, A. Prasad, E. Priyadarshini, A.K. Patel, A. Naik, M. Saravanan, H. Barabadi, B. Paul, R. Paulraj, R. Meena, Emerging antineoplastic plant-based gold nanoparticle synthesis: a mechanistic exploration of their anticancer activity toward cervical cancer cells. J Clust Sci 31, 1329–1340 (2020). https://doi.org/10.1007/s10876-019-01742-1

    Article  CAS  Google Scholar 

  104. J. Labille, R. Catalano, D. Slomberg, S. Motellier, A. Pinsino, P. Hennebert, C. Santaella, V. Bartolomei, Assessing sunscreen lifecycle to minimize environmental risk posed by nanoparticulate UV-filters – a review for safer-by-design products. Front Environ Sci 8, 1–25 (2020). https://doi.org/10.3389/fenvs.2020.00101

    Article  Google Scholar 

  105. I. Corsi, G.N. Cherr, H.S. Lenihan, J. Labille, M. Hassellov, L. Canesi, F. Dondero, G. Frenzilli, D. Hristozov, V. Puntes, C. Della Torre, Common strategies and technologies for the ecosafety assessment and design of nanomaterials entering the marine environment. ACS Nano 8, 9694–9709 (2014). https://doi.org/10.1021/nn504684k

    Article  CAS  Google Scholar 

  106. M.C. Esposito, I. Corsi, G.L. Russo, C. Punta, E. Tosti, A. Gallo, The era of nanomaterials: a safe solution or a risk for marine environmental pollution? Biomolecules 11, 1–25 (2021). https://doi.org/10.3390/biom11030441

    Article  CAS  Google Scholar 

  107. K.C. Nguyen, V.L. Seligy, A. Massarsky, T.W. Moon, P. Rippstein, J. Tan, A.F. Tayabali, Comparison of toxicity of uncoated and coated silver nanoparticles. J Phys Conf Ser 429 (2013).https://doi.org/10.1088/1742-6596/429/1/012025

  108. V.K. Sharma, K.M. Siskova, R. Zboril, J.L. Gardea-Torresdey, Organic-coated silver nanoparticles in biological and environmental conditions: fate, stability and toxicity. Adv Colloid Interface Sci 204, 15–34 (2014). https://doi.org/10.1016/j.cis.2013.12.002

    Article  CAS  Google Scholar 

  109. S.J. Yu, Y.G. Yin, J.F. Liu, Silver nanoparticles in the environment. Environ Sci Process Impacts 15, 78–92 (2013). https://doi.org/10.1039/c2em30595j

    Article  CAS  Google Scholar 

  110. T. Klaus, R. Joerger, E. Olsson, C.G. Granqvist, Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96, 13611–13614 (1999)

    Article  CAS  Google Scholar 

  111. B. Nair, T. Pradeep, Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2, 293–298 (2002). https://doi.org/10.1021/cg0255164

    Article  CAS  Google Scholar 

  112. S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73, 1712–1720 (2007). https://doi.org/10.1128/AEM.02218-06

    Article  CAS  Google Scholar 

  113. S. Veeranna, A. Burhanuddin, S. Khanum et al., Biosynthesis and antibacterial activity of silver nanoparticles. Res. J. Biotechnol. 8, 11–17 (2013)

    CAS  Google Scholar 

  114. P. Van Dong, C.H. Ha, L.T. Binh, J. Kasbohm, Chemical synthesis and antibacterial activity of novel-shaped silver nanoparticles. Int Nano Lett 2, 1–9 (2012). https://doi.org/10.1186/2228-5326-2-9

    Article  Google Scholar 

  115. M.A. Raza, Z. Kanwal, A. Rauf, Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 6 (2016).https://doi.org/10.3390/nano6040074

  116. L. Actis, A. Srinivasan, J.L. Lopez-Ribot, A.K. Ramasubramanian, J.L. Ong, Effect of silver nanoparticle geometry on methicillin susceptible and resistant Staphylococcus aureus, and osteoblast viability. J Mater Sci Mater Med 26, 1–7 (2015). https://doi.org/10.1007/s10856-015-5538-8

    Article  CAS  Google Scholar 

  117. M. Kumari, S. Pandey, V.P. Giri, A. Bhattacharya, R. Shukla, A. Mishra, C.S. Nautiyal, Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microb Pathog 105, 346–355 (2017). https://doi.org/10.1016/j.micpath.2016.11.012

    Article  CAS  Google Scholar 

  118. B. Das, S.K. Dash, D. Mandal, T. Ghosh, S. Chattopadhyay, S. Tripathy, S. Das, S.K. Dey, D. Das, S. Roy, Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10, 862–876 (2017). https://doi.org/10.1016/j.arabjc.2015.08.008

    Article  CAS  Google Scholar 

  119. Y.K. Tak, S. Pal, P.K. Naoghare, S. Rangasamy, J.M. Song, Shape-dependent skin penetration of silver nanoparticles: does it really matter? Sci Rep 5, 1–11 (2015). https://doi.org/10.1038/srep16908

    Article  CAS  Google Scholar 

  120. K. Kalimuthu, R. Suresh Babu, D. Venkataraman, M. Bilal, S. Gurunathan, Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surfaces B Biointerfaces 65, 150–153 (2008). https://doi.org/10.1016/j.colsurfb.2008.02.018

    Article  CAS  Google Scholar 

  121. R. Singh, P. Wagh, S. Wadhwani, S. Gaidhani, A. Kumbhar, J. Bellare, B.A. Chopade, Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int J Nanomed 8, 4277–4290 (2013). https://doi.org/10.2147/IJN.S48913

    Article  CAS  Google Scholar 

  122. M. Oves, M.S. Khan, A. Zaidi, A.S. Ahmed, F. Ahmed, E. Ahmad, A. Sherwani, M. Owais, A. Azam, Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One 8 (2013).https://doi.org/10.1371/journal.pone.0059140

  123. V.L. Das, R. Thomas, R.T. Varghese, E.V. Soniya, J. Mathew, E.K. Radhakrishnan, Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4, 121–126 (2014). https://doi.org/10.1007/s13205-013-0130-8

    Article  Google Scholar 

  124. A.K. Singh, V. Rathod, D. Singh, S. Ninganagouda, P. Kulkarni, J. Mathew, M.U. Haq, Bioactive silver nanoparticles from endophytic fungus Fusarium sp. isolated from an ethanomedicinal plant Withania somnifera ( Ashwagandha ) and its antibacterial activity. Int J Nanomater Biostruct. 5, 15–19 (2015)

    Google Scholar 

  125. R. Vaidyanathan, S. Gopalram, K. Kalishwaralal, V. Deepak, S.R. Pandian, S. Gurunathan, Enhanced silver nanoparticle synthesis by optimization of nitrate reductase activity. Colloids Surfaces B Biointerfaces 75, 335–341 (2010). https://doi.org/10.1016/j.colsurfb.2009.09.006

    Article  CAS  Google Scholar 

  126. N. Saifuddin, C.W. Wong, A.A.N. Yasumira, Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-Journal Chem 6, 61–70 (2009). https://doi.org/10.1155/2009/734264

    Article  CAS  Google Scholar 

  127. K. Kalishwaralal, V. Deepak, S.R. Pandian, M. Kottaisamy, S. BarathManiKanth, B. Kartikeyan, S. Gurunathan, Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surfaces B Biointerfaces 77, 257–262 (2010). https://doi.org/10.1016/j.colsurfb.2010.02.007

    Article  CAS  Google Scholar 

  128. S. Sadhasivam, P. Shanmugam, K.S. Yun, Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surfaces B Biointerfaces 81, 358–362 (2010). https://doi.org/10.1016/j.colsurfb.2010.07.036

    Article  CAS  Google Scholar 

  129. A. Mohammed Fayaz, M. Girilal, M. Rahman, R. Venkatesan, P.T. Kalaichelvan, Biosynthesis of silver and gold nanoparticles using thermophilic bacterium Geobacillus stearothermophilus. Process Biochem 46, 1958–1962 (2011). https://doi.org/10.1016/j.procbio.2011.07.003

    Article  CAS  Google Scholar 

  130. S. Zaki, M.F. El Kady, D. Abd-El-Haleem, Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Mater Res Bull 46, 1571–1576 (2011). https://doi.org/10.1016/j.materresbull.2011.06.025

    Article  CAS  Google Scholar 

  131. C.G. Kumar, S.K. Mamidyala, Extracellular synthesis of silver nanoparticles using culture supernatant of Pseudomonas aeruginosa. Colloids Surfaces B Biointerfaces 84, 462–466 (2011). https://doi.org/10.1016/j.colsurfb.2011.01.042

    Article  CAS  Google Scholar 

  132. S. Shivaji, S. Madhu, S. Singh, Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46, 1800–1807 (2011). https://doi.org/10.1016/j.procbio.2011.06.008

    Article  CAS  Google Scholar 

  133. R.Y. Parikh, R. Ramanathan, P.J. Coloe, S.K. Bhargava, M.S. Patole, Y.S. Shouche, V. Bansal, Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by morganella spp. PLoS ONE 6, 1–7 (2011). https://doi.org/10.1371/journal.pone.0021401

    Article  CAS  Google Scholar 

  134. X. Wei, M. Luo, W. Li, L. Yang, X. Liang, L. Xu, P. Kong, H. Liu, Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3. Bioresour Technol 103, 273–278 (2012). https://doi.org/10.1016/j.biortech.2011.09.118

    Article  CAS  Google Scholar 

  135. S. Gaidhani, R. Singh, D. Singh, U. Patel, K. Shevade, R. Yeshvekar, B.A. Chopade, Biofilm disruption activity of silver nanoparticles synthesized by Acinetobacter calcoaceticus PUCM 1005. Mater Lett 108, 324–327 (2013). https://doi.org/10.1016/j.matlet.2013.07.023

    Article  CAS  Google Scholar 

  136. S. Priyadarshini, V. Gopinath, N. Meera Priyadharsshini, D. MubarakAli, P. Velusamy, Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids Surfaces B Biointerfaces 102, 232–237 (2013). https://doi.org/10.1016/j.colsurfb.2012.08.018

    Article  CAS  Google Scholar 

  137. A.I. El-Batal, M.A. Amin, M.M.K. Shehata, M.M.A. Hallol, Synthesis of silver nanoparticles by Bacillus stearothermophilus using gamma radiation and their antimicrobial activity. World Appl Sci J 22, 1–16 (2013). https://doi.org/10.5829/idosi.wasj.2013.22.01.2956

    Article  CAS  Google Scholar 

  138. H. Gandhi, S. Khan, Biological synthesis of silver nanoparticles and its antibacterial activity. J Nanomed Nanotechnol 07, 2–4 (2016). https://doi.org/10.4172/2157-7439.1000366

    Article  CAS  Google Scholar 

  139. K.V. Radha, V. Thamilselvi, Synthesis of silver nanoparticles from Pseudomonas putida NCIM 2650 in silver nitrate supplemented growth medium and optimization using response surface methodology. Dig J Nanomater Biostructures 8, 1101–1111 (2013)

    Google Scholar 

  140. S.V. Otari, R.M. Patil, N.H. Nadaf, S.J. Ghosh, S.H. Pawar, Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application. Environ Sci Pollut Res 21, 1503–1513 (2014). https://doi.org/10.1007/s11356-013-1764-0

    Article  CAS  Google Scholar 

  141. A. Lateef, I.A. Adelere, E.B. Gueguim-Kana, T.B. Asafa, L.S. Beukes, Green synthesis of silver nanoparticles using keratinase obtained from a strain of Bacillus safensis LAU 13. Int Nano Lett 5, 29–35 (2015). https://doi.org/10.1007/s40089-014-0133-4

    Article  CAS  Google Scholar 

  142. C.G. Kumar, Y. Poornachandra, Biodirected synthesis of miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles. Colloids Surfaces B Biointerfaces 125, 110–119 (2015). https://doi.org/10.1016/j.colsurfb.2014.11.025

    Article  CAS  Google Scholar 

  143. D. Rathod, P. Golinska, M. Wypij, H. Dahm, M. Rai, A new report of Nocardiopsis valliformis strain OT1 from alkaline Lonar crater of India and its use in synthesis of silver nanoparticles with special reference to evaluation of antibacterial activity and cytotoxicity. Med Microbiol Immunol 205, 435–447 (2016). https://doi.org/10.1007/s00430-016-0462-1

    Article  CAS  Google Scholar 

  144. C. Saravanan, R. Rajesh, T. Kaviarasan, K. Muthukumar, D. Kavitake, P.H. Shetty, Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Reports 15, 33–40 (2017). https://doi.org/10.1016/j.btre.2017.02.006

    Article  Google Scholar 

  145. M. Saravanan, S.K. Barik, D. MubarakAli, P. Prakash, A. Pugazhendhi, Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog 116, 221–226 (2018). https://doi.org/10.1016/j.micpath.2018.01.038

    Article  CAS  Google Scholar 

  146. S. Gurunathan, Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arab J Chem 12, 168–180 (2019). https://doi.org/10.1016/j.arabjc.2014.11.014

    Article  CAS  Google Scholar 

  147. A. Hossain, X. Hong, E. Ibrahim, B. Li, G. Sun, Y. Meng, Y. Wang, Q. An, Green synthesis of silver nanoparticles with culture supernatant of a bacterium pseudomonas rhodesiae and their antibacterial activity against soft rot pathogen dickeya dadantii. Molecules 24, 1–11 (2019). https://doi.org/10.3390/molecules24122303

    Article  CAS  Google Scholar 

  148. S. Saeed, A. Iqbal, M.A. Ashraf, Bacterial-mediated synthesis of silver nanoparticles and their significant effect against pathogens. Environ. Sci. Pollut. Res. (2020).https://doi.org/10.1007/s11356-020-07610-0

  149. M.T. Yilmaz, H. İspirli, O. Taylan, E. Dertli, Synthesis and characterisation of alternan-stabilised silver nanoparticles and determination of their antibacterial and antifungal activities against foodborne pathogens and fungi. Lwt 128 (2020).https://doi.org/10.1016/j.lwt.2020.109497

  150. A.M. Al, M.M. Alawlaqi, M.A. Al Abboud, Silver nanoparticles biosynthesis by Fusarium moniliforme and their antimicrobial activity against some food-borne bacteria. Mycopath 11, 1–7 (2014)

    Google Scholar 

  151. M.R. Salvadori, R.A. Ando, C.A.O. Nascimento, B. Corrêa, Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS One 10, 1–15 (2015). https://doi.org/10.1371/journal.pone.0129799

    Article  CAS  Google Scholar 

  152. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar, M. Sastry, Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1, 515–519 (2001). https://doi.org/10.1021/nl0155274

    Article  CAS  Google Scholar 

  153. A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, M. Sastry, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surfaces B Biointerfaces 28, 313–318 (2003). https://doi.org/10.1016/S0927-7765(02)00174-1

    Article  CAS  Google Scholar 

  154. M. Gericke, A. Pinches, Biological synthesis of metal nanoparticles. Hydrometallurgy 83, 132–140 (2006). https://doi.org/10.1016/j.hydromet.2006.03.019

    Article  CAS  Google Scholar 

  155. K.C. Bhainsa, S.F. D’Souza, Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surfaces B Biointerfaces 47, 160–164 (2006). https://doi.org/10.1016/j.colsurfb.2005.11.026

    Article  CAS  Google Scholar 

  156. N. Vigneshwaran, N.M. Ashtaputre, P.V. Varadarajan, R.P. Nachane, K.M. Paralikar, R.H. Balasubramanya, Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61, 1413–1418 (2007). https://doi.org/10.1016/j.matlet.2006.07.042

    Article  CAS  Google Scholar 

  157. M. Gajbhiye, J. Kesharwani, A. Ingle, A. Gade, M. Rai, Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed. Nanotechnol., Biol Med 5, 382–386 (2009). https://doi.org/10.1016/j.nano.2009.06.005

    Article  CAS  Google Scholar 

  158. A. Mohammed Fayaz, K. Balaji, P.T. Kalaichelvan, R. Venkatesan, Fungal based synthesis of silver nanoparticles-An effect of temperature on the size of particles. Colloids Surfaces B Biointerfaces 74, 123–126 (2009). https://doi.org/10.1016/j.colsurfb.2009.07.002

    Article  CAS  Google Scholar 

  159. K. Kathiresan, S. Manivannan, M.A. Nabeel, B. Dhivya, Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surfaces B Biointerfaces 71, 133–137 (2009). https://doi.org/10.1016/j.colsurfb.2009.01.016

    Article  CAS  Google Scholar 

  160. N.K.S. Hemath, G. Kumar, K. L, R.K.V. Bhaskara, Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch Appl Sci Res 2, 161–167 (2009)

    Google Scholar 

  161. G. Li, D. He, Y. Qian, B. Guan, S. Gao, Y. Cui, K. Yokoyama, L. Wang, Fungus-mediated green synthesis of silver nanoparticles using aspergillus terreus. Int J Mol Sci 13, 466–476 (2012). https://doi.org/10.3390/ijms13010466

    Article  CAS  Google Scholar 

  162. K. Saminathan Biosynthesis of silver nanoparticles from dental caries causing fungi Candida albicans.4:1084–1091 (2015).

  163. G.B. Shelar, A.M. Chavan, Myco-synthesis of silver nanoparticles from Trichoderma harzianum and its impact on germination status of oil seed. Biolife 3, 109–113 (2015)

    Google Scholar 

  164. A. El-aziz, M.A. Mahmoud, H.A. Metwaly, Biosynthesis of silver nanoparticles using Fusarium solani. Dig J Nanomater Biostructures 10, 655–662 (2015)

    Google Scholar 

  165. V.R. Netala, V.S. Kotakadi, P. Bobbu, S.A. Gaddam, V. Tartte Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti microbial studies. 3 Biotech 6 (2016). https://doi.org/10.1007/s13205-016-0433-7

  166. J. Saxena, P.K. Sharma, M.M. Sharma, A. Singh, Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. Springerplus 5 (2016).https://doi.org/10.1186/s40064-016-2558-x

  167. P. Azmath, S. Baker, D. Rakshith, S. Satish, Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharm J 24, 140–146 (2016). https://doi.org/10.1016/j.jsps.2015.01.008

    Article  Google Scholar 

  168. K. Zomorodian, S. Pourshahid, A. Sadatsharifi, P Mehryar, K. Pakshir, M.J. Rahimi, A. Arabi Monfared, Biosynthesis and characterization of silver nanoparticles by aspergillus species. Biomed.Res. Int. 2016 (2016).https://doi.org/10.1155/2016/5435397

  169. A. Barapatre, K.R. Aadil, H. Jha, Synergistic antibacterial and antibiofilm activity of silver nanoparticles biosynthesized by lignin-degrading fungus. Bioresour.Bioprocess. 3 (2016).https://doi.org/10.1186/s40643-016-0083-y

  170. A.M. Elgorban, A.N. Al-Rahmah, S.R. Sayed et al., Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol Biotechnol Equip 30, 299–304 (2016). https://doi.org/10.1080/13102818.2015.1133255

    Article  CAS  Google Scholar 

  171. H.A.M. Ammar, T.A. El-Desouky, Green synthesis of nanosilver particles by Aspergillus terreus HA1N and Penicillium expansum HA2N and its antifungal activity against mycotoxigenic fungi. J Appl Microbiol 121, 89–100 (2016). https://doi.org/10.1111/jam.13140

    Article  CAS  Google Scholar 

  172. C.A. Ottoni, M.F. Simões, S. Fernandes, J.G. Dos Santos, E.S. Da Silva, R.F. de Souza, A.E. Maiorano, Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express 7 (2017).https://doi.org/10.1186/s13568-017-0332-2

  173. K. Gudikandula, P. Vadapally, M.A. Singara Charya, Biogenic synthesis of silver nanoparticles from white rot fungi: their characterization and antibacterial studies. OpenNano 2, 64–78 (2017). https://doi.org/10.1016/j.onano.2017.07.002

    Article  Google Scholar 

  174. P. Phanjom, G. Ahmed, Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and their antibacterial effect. Adv. Nat. Sci. Nanosci. Nanotechnol.8 (2017).https://doi.org/10.1088/2043-6254/aa92bc

  175. L.P. Costa Silva, J. Pinto Oliveira, W.J. Keijok, A.R. da Silva, A.R. Aguiar, M.C. Guimarães, C.M. Ferraz, J.V. Araújo, F.L. Tobias, F.R. Braga, Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. Int J Nanomedicine 12, 6373–6381 (2017). https://doi.org/10.2147/IJN.S137703

    Article  Google Scholar 

  176. J.A. Elegbede, A. Lateef, M.A. Azeez, T.B. Asafa, T.A. Yekeen, I.C. Oladipo, E.A. Adebayo, L.S. Beukes, E.B. Gueguim-Kana, Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol. 12, 857–863 (2018). https://doi.org/10.1049/iet-nbt.2017.0299

    Article  Google Scholar 

  177. S. Neethu, S.J. Midhun, E.K. Radhakrishnan, M. Jyothis, Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumanii. Microb Pathog 116, 263–272 (2018). https://doi.org/10.1016/j.micpath.2018.01.033

    Article  CAS  Google Scholar 

  178. R.M. Elamawi, R.E. Al-Harbi, A.A. Hendi, Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control 28, 1–11 (2018). https://doi.org/10.1186/s41938-018-0028-1

    Article  Google Scholar 

  179. M. Saravanan, S. Arokiyaraj, T. Lakshmi, A. Pugazhendhi, Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb Pathog 117, 68–72 (2018). https://doi.org/10.1016/j.micpath.2018.02.008

    Article  CAS  Google Scholar 

  180. D. Popli, V. Anil, A.B. Subramanyam, N. MN, R. VR, S.N. Rao, R.V. Rai, M. Govindappa, Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artif Cells Nanomedicine Biotechnol 46, 676–683 (2018). https://doi.org/10.1080/21691401.2018.1434188

    Article  CAS  Google Scholar 

  181. P.K. Seetharaman, R. Chandrasekaran, S. Gnanasekar, G. Chandrakasan, M. Gupta, D.B. Manikandan, S. Sivaperumal, Antimicrobial and larvicidal activity of eco-friendly silver nanoparticles synthesized from endophytic fungi Phomopsis liquidambaris. Biocatal Agric Biotechnol 16, 22–30 (2018). https://doi.org/10.1016/j.bcab.2018.07.006

    Article  Google Scholar 

  182. S.K. Gond, A. Mishra, S.K. Verma, V.K. Sharma, R.N. Kharwar, Synthesis and characterization of antimicrobial silver nanoparticles by an endophytic fungus isolated from Nyctanthes arbor-tristis. Proc Natl Acad Sci India Sect B - Biol Sci 90, 641–645 (2020). https://doi.org/10.1007/s40011-019-01137-2

    Article  CAS  Google Scholar 

  183. S. Tyagi, P.K. Tyagi, D. Gola, N. Chauhan, R.K. Bharti, Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: characterization and antibacterial potential. SN Appl. Sci. 1 (2019).https://doi.org/10.1007/s42452-019-1593-y

  184. T. Akther, V. Mathipi, N.S. Kumar, M. Davoodbasha, H. Srinivasan, Fungal-mediated synthesis of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis. Environ Sci Pollut Res 26, 13649–13657 (2019). https://doi.org/10.1007/s11356-019-04718-w

    Article  CAS  Google Scholar 

  185. J.M. Kobashigawa, C.A. Robles, M.L. Martínez Ricci, C.C. Carmarán, Influence of strong bases on the synthesis of silver nanoparticles (AgNPs) using the ligninolytic fungi Trametes trogii. Saudi J Biol Sci 26, 1331–1337 (2019). https://doi.org/10.1016/j.sjbs.2018.09.006

    Article  CAS  Google Scholar 

  186. N. Aziz, M. Faraz, M.A. Sherwani, T. Fatma, R. Prasad, Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7, 1–11 (2019). https://doi.org/10.3389/fchem.2019.00065

    Article  CAS  Google Scholar 

  187. M. Manjunath Hulikere, C.G. Joshi, Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus- Cladosporium cladosporioides. Process Biochem 82, 199–204 (2019). https://doi.org/10.1016/j.procbio.2019.04.011

    Article  CAS  Google Scholar 

  188. T. Akther, S. Hemalatha, Mycosilver nanoparticles: synthesis, characterization and its efficacy against plant pathogenic fungi. Bionanoscience 9, 296–301 (2019). https://doi.org/10.1007/s12668-019-0607-y

    Article  Google Scholar 

  189. N. Feroze, B. Arshad, M. Younas, M.I. Afridi, S. Saqib, A. Ayaz, Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc Res Tech 83, 72–80 (2020). https://doi.org/10.1002/jemt.23390

    Article  CAS  Google Scholar 

  190. A. Aygün, S. Özdemir, M. Gülcan, K. Cellat, F. Şen, Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J. Pharm. Biomed. Anal.178 (2020).https://doi.org/10.1016/j.jpba.2019.112970

  191. S. Yousef, N. Ibrahim, S. Farag, A. El-mehalawy, A. Ismaiel, A. Ahmed, Mycosynthesis of silver nanoparticles by an endophytic fungus Alternaria tenuissima and evaluation of their antimicrobial and antioxidant effect. Egypt J Microbiol 54, 63–76 (2019). https://doi.org/10.21608/ejm.2019.13564.1101

    Article  Google Scholar 

  192. K.S. Almaary, S.R.M. Sayed, O.H. Abd-Elkader, T.M. Dawoud, N.F. El Orabi, A.M. Elgorban, Complete green synthesis of silver-nanoparticles applying seed-borne Penicillium duclauxii. Saudi J Biol Sci 27, 1333–1339 (2020). https://doi.org/10.1016/j.sjbs.2019.12.022

    Article  CAS  Google Scholar 

  193. A. Danagoudar, G.K. Pratap, M. Shantaram, K. Ghosh, S.R. Kanade, C.G. Joshi, Characterization, cytotoxic and antioxidant potential of silver nanoparticles biosynthesised using endophytic fungus (Penicillium citrinum CGJ-C1). Mater Today Commun 25, 101385 (2020). https://doi.org/10.1016/j.mtcomm.2020.101385

    Article  CAS  Google Scholar 

  194. R. Chandankere, J. Chelliah, K. Subban, V.C. Shanadrahalli, A. Parvez, H.M. Zabed, Y.C. Sharma, X. Qi, Pleiotropic functions and biological potentials of silver nanoparticles synthesized by an endophytic fungus. Front Bioeng Biotechnol 8, 1–14 (2020). https://doi.org/10.3389/fbioe.2020.00095

    Article  Google Scholar 

  195. G. Kaur, A. Kalia, H.S. Sodhi, Size controlled, time-efficient biosynthesis of silver nanoparticles from Pleurotus florida using ultra-violet, visible range, and microwave radiations. Inorg Nano-Metal Chem 50, 35–41 (2020). https://doi.org/10.1080/24701556.2019.1661466

    Article  CAS  Google Scholar 

  196. A.S. Jaloot, M.N. Owaid, G.A. Naeem, R.F. Muslim, Mycosynthesizing and characterizing silver nanoparticles from the mushroom Inonotus hispidus (Hymenochaetaceae), and their antibacterial and antifungal activities. Environ Nanotechnol, Monit Manag 14, 100313 (2020). https://doi.org/10.1016/j.enmm.2020.100313

    Article  Google Scholar 

  197. S. Hietzschold, A. Walter, C. Davis, A.A. Taylor, L. Sepunaru, Does nitrate reductase play a role in silver nanoparticle synthesis? Evidence for NADPH as the sole reducing agent. ACS Sustain Chem Eng 7, 8070–8076 (2019). https://doi.org/10.1021/acssuschemeng.9b00506

    Article  CAS  Google Scholar 

  198. N. Durán, P.D. Marcato, M. Durán, A. Yadav, A. Gade, M. Rai, Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90, 1609–1624 (2011). https://doi.org/10.1007/s00253-011-3249-8

    Article  CAS  Google Scholar 

  199. S.A. Kumar, M.K. Abyaneh, S.W. Gosavi, S.K. Kulkarni, R. Pasricha, A. Ahmad, M.I. Khan, Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29, 439–445 (2007). https://doi.org/10.1007/s10529-006-9256-7

    Article  CAS  Google Scholar 

  200. V. Patel, D. Berthold, P. Puranik, M. Gantar, Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Reports 5, 112–119 (2015). https://doi.org/10.1016/j.btre.2014.12.001

    Article  Google Scholar 

  201. R.R.R. Kannan, R. Arumugam, D. Ramya, K. Manivannan, P. Anantharaman, Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Appl Nanosci 3, 229–233 (2013). https://doi.org/10.1007/s13204-012-0125-5

    Article  CAS  Google Scholar 

  202. S. Baker, B.P. Harini, D. Rakshith, S. Satish, Marine microbes: Invisible nanofactories. J Pharm Res 6, 383–388 (2013). https://doi.org/10.1016/j.jopr.2013.03.001

    Article  CAS  Google Scholar 

  203. T.A. Roseline, M. Murugan, M.P. Sudhakar, K. Arunkumar, Nanopesticidal potential of silver nanocomposites synthesized from the aqueous extracts of red seaweeds. Environ Technol Innov 13, 82–93 (2019). https://doi.org/10.1016/j.eti.2018.10.005

    Article  Google Scholar 

  204. K. AbdelRahim, S.Y. Mahmoud, A.M. Ali, K.S. Almaary, A.E. Mustafa, S.M. Husseiny, Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci 24, 208–216 (2017). https://doi.org/10.1016/j.sjbs.2016.02.025

    Article  CAS  Google Scholar 

  205. R.R. Nayak, N. Pradhan, D. Behera, K.M. Pradhan, S. Mishra, L.B. Sukla, B.K. Mishra, Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanoparticle Res 13, 3129–3137 (2011). https://doi.org/10.1007/s11051-010-0208-8

    Article  CAS  Google Scholar 

  206. Z. Bao, J. Cao, G. Kang, C.Q. Lan, Effects of reaction conditions on light-dependent silver nanoparticle biosynthesis mediated by cell extract of green alga Neochloris oleoabundans. Environ Sci Pollut Res 26, 2873–2881 (2019). https://doi.org/10.1007/s11356-018-3843-8

    Article  CAS  Google Scholar 

  207. J. McTeer, A.P. Dean, K.N. White, J.K. Pittman, Bioaccumulation of silver nanoparticles into Daphnia magna from a freshwater algal diet and the impact of phosphate availability. Nanotoxicology 8, 305–316 (2014). https://doi.org/10.3109/17435390.2013.778346

    Article  CAS  Google Scholar 

  208. J. Wang, C. Chen, Biosorbents for heavy metals removal and their future. Biotechnol Adv 27, 195–226 (2009). https://doi.org/10.1016/j.biotechadv.2008.11.002

    Article  CAS  Google Scholar 

  209. I. Barwal, P. Ranjan, S. Kateriya, S.C. Yadav, Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J Nanobiotechnology 9, 1–12 (2011). https://doi.org/10.1186/1477-3155-9-56

    Article  CAS  Google Scholar 

  210. S. Azizi, F. Namvar, M. Mahdavi, M.B. Ahmad, R. Mohamad, Biosynthesis of silver nanoparticles using brown marine macroalga, Sargassum muticum aqueous extract. Materials (Basel) 6, 5942–5950 (2013). https://doi.org/10.3390/ma6125942

    Article  CAS  Google Scholar 

  211. N. Aziz, M. Faraz, R. Pandey, M. Shakir, T. Fatma, A. Varma, I. Barman, R. Prasad, Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial, and photocatalytic properties. Langmuir 31, 11605–11612 (2015). https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  Google Scholar 

  212. T. Kathiraven, A. Sundaramanickam, N. Shanmugam, T. Balasubramanian, Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci 5, 499–504 (2015). https://doi.org/10.1007/s13204-014-0341-2

    Article  CAS  Google Scholar 

  213. Z.H. Pak, H. Abbaspour, N. Karimi, A. Fattahi, Eco-friendly synthesis and antimicrobial activity of silver nanoparticles using Dracocephalum moldavica seed extract. Appl. Sci. 6 (2016).https://doi.org/10.3390/app6030069

  214. J. Venkatesan, S.K. Kim, M.S. Shim, Antimicrobial, antioxidant, and anticancer activities of biosynthesized silver nanoparticles using marine algae ecklonia cava. Nanomaterials 6 (2016).https://doi.org/10.3390/nano6120235

  215. C. Rajkuberan, S. Prabukumar, G. Sathishkumar, A. Wilson, K. Ravindran, S. Sivaramakrishnan, Facile synthesis of silver nanoparticles using Euphorbia antiquorum L. latex extract and evaluation of their biomedical perspectives as anticancer agents. J Saudi Chem Soc 21, 911–919 (2017). https://doi.org/10.1016/j.jscs.2016.01.002

    Article  CAS  Google Scholar 

  216. S. Shende, A. Gade, M. Rai, Large-scale synthesis and antibacterial activity of fungal-derived silver nanoparticles. Environ Chem Lett 15, 427–434 (2017). https://doi.org/10.1007/s10311-016-0599-6

    Article  CAS  Google Scholar 

  217. F.T. Minhas, G. Arslan, I.H. Gubbuk, C. Akkoz, B.Y. Ozturk, B. Asıkkutlu, U. Arslan, M. Ersoz, Evaluation of antibacterial properties on polysulfone composite membranes using synthesized biogenic silver nanoparticles with Ulva compressa (L.) Kütz. and Cladophora glomerata (L.) Kütz. extracts. Int J Biol Macromol 107, 157–165 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.149

    Article  CAS  Google Scholar 

  218. D.Y. Kim, R.G. Saratale, S. Shinde, A. Syed, F. Ameen, G. Ghodake, Green synthesis of silver nanoparticles using Laminaria japonica extract: Characterization and seedling growth assessment. J Clean Prod 172, 2910–2918 (2017). https://doi.org/10.1016/j.jclepro.2017.11.123

    Article  CAS  Google Scholar 

  219. A. Pugazhendhi, D. Prabakar, J.M. Jacob, I. Karuppusamy, R.G. Saratale, Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog 114, 41–45 (2018). https://doi.org/10.1016/j.micpath.2017.11.013

    Article  CAS  Google Scholar 

  220. A.P. de Aragão, T.M. de Oliveira, P.V. Quelemes, M.L. Perfeito, M.C. Araujo, J.D. Santiago, V.S. Cardoso, P. Quaresma, J.R. de Almeida, D.A. da Silva, Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arab J Chem 12, 4182–4188 (2019). https://doi.org/10.1016/j.arabjc.2016.04.014

    Article  CAS  Google Scholar 

  221. A. Massironi, A. Morelli, L. Grassi, D. Puppi, S. Braccini, G. Maisetta, S. Esin, G. Batoni, C. Della Pina, F. Chiellini, Ulvan as novel reducing and stabilizing agent from renewable algal biomass: application to green synthesis of silver nanoparticles. Carbohydr Polym 203, 310–321 (2019). https://doi.org/10.1016/j.carbpol.2018.09.066

    Article  CAS  Google Scholar 

  222. A. Arya, V. Mishra, T.S. Chundawat, Green synthesis of silver nanoparticles from green algae (Botryococcus braunii) and its catalytic behavior for the synthesis of benzimidazoles. Chem Data Collect 20, 1–7 (2019). https://doi.org/10.1016/j.cdc.2019.100190

    Article  CAS  Google Scholar 

  223. A. Moshfegh, A. Jalali, A. Salehzadeh, A.S. Jozani, Biological synthesis of silver nanoparticles by cell-free extract of Polysiphonia algae and their anticancer activity against breast cancer MCF-7 cell lines. Micro Nano Lett 14, 581–584 (2019). https://doi.org/10.1049/mnl.2018.5260

    Article  CAS  Google Scholar 

  224. N. Abdel-Raouf, N.M. Al-Enazi, I.B.M. Ibraheem, R.M. Alharbi, M.M. Alkhulaifi, Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi J Biol Sci 26, 1207–1215 (2019). https://doi.org/10.1016/j.sjbs.2018.01.007

    Article  CAS  Google Scholar 

  225. A. Mahajan, A. Arya, T.S. Chundawat, Green synthesis of silver nanoparticles using green alga (Chlorella vulgaris) and its application for synthesis of quinolines derivatives. Synth Commun 49, 1926–1937 (2019). https://doi.org/10.1080/00397911.2019.1610776

    Article  CAS  Google Scholar 

  226. R.A. Hamouda, M.H. Hussein, R.A. Abo-elmagd, S.S. Bawazir, Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica. Sci Rep 9, 1–17 (2019). https://doi.org/10.1038/s41598-019-49444-y

    Article  CAS  Google Scholar 

  227. N. Valarmathi, F. Ameen, A. Almansob, P. Kumar, S. Arunprakash, M. Govarthanan, Utilization of marine seaweed Spyridia filamentosa for silver nanoparticles synthesis and its clinical applications. Mater Lett 263, 127244 (2020). https://doi.org/10.1016/j.matlet.2019.127244

    Article  CAS  Google Scholar 

  228. P. Bhuyar, M.H.A. Rahim, S. Sundararaju, R. Ramaraj, G.P. Maniam, N. Govindan, Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni-Suef Univ. J. Basic Appl. Sci. 9 (2020). https://doi.org/10.1186/s43088-019-0031-y

  229. B. Yılmaz Öztürk, B. Yenice Gürsu, İ Dağ, Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochem 89, 208–219 (2020). https://doi.org/10.1016/j.procbio.2019.10.027

    Article  CAS  Google Scholar 

  230. R. Fatima, M. Priya, L. Indurthi, V. Radhakrishnan, R. Sudhakaran, Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microb Pathog 138, 103780 (2020). https://doi.org/10.1016/j.micpath.2019.103780

    Article  CAS  Google Scholar 

  231. Y.A. Yugay, R.V. Usoltseva, V.E. Silant’ev, A.E. Egorova, A.A. Karabtsov, V.V. Kumeiko, S.P. Ermakova, V.P. Bulgakov, Y.N. Shkryl, Synthesis of bioactive silver nanoparticles using alginate, fucoidan and laminaran from brown algae as a reducing and stabilizing agent. Carbohydr Polym 245, 116547 (2020). https://doi.org/10.1016/j.carbpol.2020.116547

    Article  CAS  Google Scholar 

  232. D. Borah, N. Das, N. Das, A. Bhattacharjee, P. Sarmah, K. Ghosh, M. Chandel, J. Rout, P. Pandey, N.N. Ghosh, C.R. Bhattacharjee, Alga-mediated facile green synthesis of silver nanoparticles: photophysical, catalytic and antibacterial activity. Appl Organomet Chem 34, 1–10 (2020). https://doi.org/10.1002/aoc.5597

    Article  CAS  Google Scholar 

  233. D. Acharya, S. Satapathy, P. Somu, U.K. Parida, G. Mishra, Apoptotic effect and anticancer activity of biosynthesized silver nanoparticles from marine algae Chaetomorpha linum extract against human colon cancer cell HCT-116. Biol. Trace Elem. Res. (2020)https://doi.org/10.1007/s12011-020-02304-7

  234. R. Mie, M.W. Samsudin, L.B. Din, A. Ahmad, N. Ibrahim, S.N. Adnan, Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum. Int J Nanomedicine 9, 121–127 (2013). https://doi.org/10.2147/IJN.S52306

    Article  CAS  Google Scholar 

  235. M. Baláž, M. Goga, M. Hegedüs, N. Daneu, M. Kováčová, L.U. Tkáčiková, L.U. Balážová, M. Bačkor, Biomechanochemical solid-state synthesis of silver nanoparticles with antibacterial activity using lichens. ACS Sustain Chem Eng 8, 13945–13955 (2020). https://doi.org/10.1021/acssuschemeng.0c03211

    Article  CAS  Google Scholar 

  236. S. Dasari, K.A. Suresh, M. Rajesh, S. Reddy, C. Samba, C.S. Hemalatha, R. Wudayagiri, L. Valluru, Biosynthesis, characterization, antibacterial and antioxidant activity of silver nanoparticles produced by lichens. J Bionanoscience 7, 237–244 (2013). https://doi.org/10.1166/jbns.2013.1140

    Article  CAS  Google Scholar 

  237. N. Yildiz, Ç. Ateş, M. Yilmaz, D. Demir, A. Yıldız, A. Çalımlı, Investigation of lichen based green synthesis of silver nanoparticles with response surface methodology. Green Process Synth 3, 259–270 (2014). https://doi.org/10.1515/gps-2014-0024

    Article  CAS  Google Scholar 

  238. K. Leela, A.D. C, A Study on the applications of silver nanoparticles synthesized usingaqueous extract and purified secondary metabolites of seaweed Hypneacervicornis 7:46–61 (2017).

  239. Z. Çlplak, C. Gökalp, B. Getiren, A. Yıldız, N. Yıldız, Catalytic performance of Ag, Au and Ag-Au nanoparticles synthesized by lichen extract. Green Process Synth 7, 433–440 (2018). https://doi.org/10.1515/gps-2017-0074

    Article  CAS  Google Scholar 

  240. K.S. Siddiqi, M. Rashid, A. Rahman, A. Husen, S. Rehman, Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity. Biomater Res 22, 1–9 (2018). https://doi.org/10.1186/s40824-018-0135-9

    Article  CAS  Google Scholar 

  241. M.A. Alqahtani, M.R. Al Othman, A.E. Mohammed, Bio fabrication of silver nanoparticles with antibacterial and cytotoxic abilities using lichens. Sci Rep 10, 1–17 (2020). https://doi.org/10.1038/s41598-020-73683-z

    Article  CAS  Google Scholar 

  242. M. Goga, M. Baláž, N. Daneu, J. Elečko, Ľ Tkáčiková, M. Marcinčinová, M. Bačkor, Biological activity of selected lichens and lichen-based Ag nanoparticles prepared by a green solid-state mechanochemical approach. Mater Sci Eng C 119, 111640 (2021). https://doi.org/10.1016/j.msec.2020.111640

    Article  CAS  Google Scholar 

  243. S. Ahmed, A.M. Saifullah, B.L. Swami, S. Ikram, Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9, 1–7 (2016). https://doi.org/10.1016/j.jrras.2015.06.006

    Article  CAS  Google Scholar 

  244. J.L. Gardea-Torresdey, E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani, M. Jose-Yacaman, Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir 19, 1357–1361 (2003). https://doi.org/10.1021/la020835i

    Article  CAS  Google Scholar 

  245. G. Singhal, R. Bhavesh, K. Kasariya, A.R. Sharma, R.P. Singh, Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanoparticle Res 13, 2981–2988 (2011). https://doi.org/10.1007/s11051-010-0193-y

    Article  CAS  Google Scholar 

  246. J. Kesharwani, K.Y. Yoon, J. Hwang, M. Rai, Phytofabrication of silver nanoparticles by leaf extract of Datura metel: hypothetical mechanism involved in synthesis. J Bionanoscience 3, 39–44 (2009). https://doi.org/10.1166/jbns.2009.1008

    Article  CAS  Google Scholar 

  247. V. Dhand, L. Soumya, S. Bharadwaj, S. Chakra, D. Bhatt, B. Sreedhar, Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C 58, 36–43 (2016). https://doi.org/10.1016/j.msec.2015.08.018

    Article  CAS  Google Scholar 

  248. P.M. Mohamedsalih, D.K. Sabir, Biosynthesis of silver nanoparticles using the aqueous extract of chamomile flower and their antibacterial activity against Acinetobacter spp. Heal Biotechnol Biopharma 3, 48–62 (2020). https://doi.org/10.22034/HBB.2020.29

    Article  Google Scholar 

  249. S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, M. Sastry, Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22, 577–583 (2006). https://doi.org/10.1021/bp0501423

    Article  CAS  Google Scholar 

  250. M. Nakhjavani, V. Nikkhah, M.M. Sarafraz, S. Shoja, M. Sarafraz, Green synthesis of silver nanoparticles using green tea leaves: experimental study on the morphological, rheological and antibacterial behaviour. Heat Mass Transf und Stoffuebertragung 53, 3201–3209 (2017). https://doi.org/10.1007/s00231-017-2065-9

    Article  CAS  Google Scholar 

  251. B. Sadeghi, A. Rostami, S.S. Momeni, Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim Acta - Part A Mol Biomol Spectrosc 134, 326–332 (2015). https://doi.org/10.1016/j.saa.2014.05.078

    Article  CAS  Google Scholar 

  252. T. Santhoshkumar, A.A. Rahuman, G. Rajakumar, S. Marimuthu, A. Bagavan, C. Jayaseelan, A.A. Zahir, G. Elango, C. Kamaraj, Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108, 693–702 (2011). https://doi.org/10.1007/s00436-010-2115-4

    Article  Google Scholar 

  253. S. Kaviya, J. Santhanalakshmi, B. Viswanathan, J. Muthumary, K. Srinivasan, Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta - Part A Mol Biomol Spectrosc 79, 594–598 (2011). https://doi.org/10.1016/j.saa.2011.03.040

    Article  CAS  Google Scholar 

  254. F. Dumur, A. Guerlin, E. Dumas, D. Bertin, D. Gigmes, C.R. Mayer, Controlled spontaneous generation of gold nanoparticles assisted by dual reducing and capping agents. Gold Bull 44, 119–137 (2011). https://doi.org/10.1007/s13404-011-0018-5

    Article  Google Scholar 

  255. P. Khandel, R.K. Yadaw, D.K. Soni, L. Kanwar, S.K. Shahi, Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct. Chem. 8, 217–254 (2018)

    Article  CAS  Google Scholar 

  256. T. Tashi, N. Vishal Gupta, V.B. Mbuya, Silver nanoparticles: synthesis, mechanism of antimicrobial action, characterization, medical applications, and toxicity effects. J Chem Pharm Res 8, 526–537 (2016)

    CAS  Google Scholar 

  257. M. Sathishkumar, K. Sneha, Y.S. Yun, Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol 101, 7958–7965 (2010). https://doi.org/10.1016/j.biortech.2010.05.051

    Article  CAS  Google Scholar 

  258. M.N. Nadagouda, R.S. Varma, Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 10, 859–886 (2008). https://doi.org/10.1039/b804703k

    Article  CAS  Google Scholar 

  259. C. Krishnaraj, E.G. Jagan, S. Rajasekar, P. Selvakumar, P.T. Kalaichelvan, N.J. Mohan, Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surfaces B Biointerfaces 76, 50–56 (2010). https://doi.org/10.1016/j.colsurfb.2009.10.008

    Article  CAS  Google Scholar 

  260. T. Elavazhagan, K.D. Arunachalam, Memecylon edule leaf extract mediated green synthesis of silver and gold nanoparticles. Int J Nanomedicine 6, 1265–1278 (2011). https://doi.org/10.2147/ijn.s18347

    Article  CAS  Google Scholar 

  261. G. Rajakumar, A. Abdul Rahuman, Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118, 196–203 (2011). https://doi.org/10.1016/j.actatropica.2011.03.003

    Article  CAS  Google Scholar 

  262. M. Zargar, A.A. Hamid, F.A. Bakar, M.N. Shamsudin, K. Shameli, F. Jahanshiri, F. Farahani, Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16, 6667–6676 (2011). https://doi.org/10.3390/molecules16086667

    Article  CAS  Google Scholar 

  263. V. Gopinath, D. MubarakAli, S. Priyadarshini, N.M. Priyadharsshini, N. Thajuddin, P. Velusamy, Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surfaces B Biointerfaces 96, 69–74 (2012). https://doi.org/10.1016/j.colsurfb.2012.03.023

    Article  CAS  Google Scholar 

  264. J.R. Nakkala, R. Mata, A.K. Gupta, S.R. Sadras, Biological activities of green silver nanoparticles synthesized with Acorous calamus rhizome extract. Eur J Med Chem 85, 784–794 (2014). https://doi.org/10.1016/j.ejmech.2014.08.024

    Article  CAS  Google Scholar 

  265. R. Mariselvam, A.J.A. Ranjitsingh, A. Usha Raja Nanthini, K. Kalirajan, C. Padmalatha, P.M. Selvakumar, Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochim Acta - Part A Mol Biomol Spectrosc 129, 537–541 (2014). https://doi.org/10.1016/j.saa.2014.03.066

    Article  CAS  Google Scholar 

  266. B. Sadeghi, F. Gholamhoseinpoor, A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta - Part A Mol Biomol Spectrosc 134, 310–315 (2015). https://doi.org/10.1016/j.saa.2014.06.046

    Article  CAS  Google Scholar 

  267. V. Kathiravan, S. Ravi, S. Ashokkumar, Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochim Acta - Part A Mol Biomol Spectrosc 130, 116–121 (2014). https://doi.org/10.1016/j.saa.2014.03.107

    Article  CAS  Google Scholar 

  268. D.A. Kumar, V. Palanichamy, S.M. Roopan, Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim Acta - Part A Mol Biomol Spectrosc 127, 168–171 (2014). https://doi.org/10.1016/j.saa.2014.02.058

    Article  CAS  Google Scholar 

  269. K.B. Narayanan, H.H. Park, Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 140, 185–192 (2014). https://doi.org/10.1007/s10658-014-0399-4

    Article  CAS  Google Scholar 

  270. S. Ashokkumar, S. Ravi, V. Kathiravan, S. Velmurugan, Synthesis of silver nanoparticles using A. indicum leaf extract and their antibacterial activity. Spectrochim Acta - Part A Mol Biomol Spectrosc 134, 34–39 (2015). https://doi.org/10.1016/j.saa.2014.05.076

    Article  CAS  Google Scholar 

  271. B. Ulug, M. Haluk Turkdemir, A. Cicek, A. Mete, Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extract. Spectrochim Acta - Part A Mol Biomol Spectrosc 135, 153–161 (2015). https://doi.org/10.1016/j.saa.2014.06.142

    Article  CAS  Google Scholar 

  272. A.R. Allafchian, S.Z. Mirahmadi-Zare, S.A.H. Jalali, S.S. Hashemi, M.R. Vahabi, Green synthesis of silver nanoparticles using phlomis leaf extract and investigation of their antibacterial activity. J Nanostructure Chem 6, 129–135 (2016). https://doi.org/10.1007/s40097-016-0187-0

    Article  CAS  Google Scholar 

  273. S. Bhakya, S. Muthukrishnan, M. Sukumaran, M. Muthukumar, Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity. Appl Nanosci 6, 755–766 (2016). https://doi.org/10.1007/s13204-015-0473-z

    Article  CAS  Google Scholar 

  274. S.N. Kharat, V.D. Mendhulkar, Synthesis, characterization and studies on antioxidant activity of silver nanoparticles using Elephantopus scaber leaf extract. Mater Sci Eng C 62, 719–724 (2016). https://doi.org/10.1016/j.msec.2016.02.024

    Article  CAS  Google Scholar 

  275. K. Jyoti, A. Singh, Green synthesis of nanostructured silver particles and their catalytic application in dye degradation. J Genet Eng Biotechnol 14, 311–317 (2016). https://doi.org/10.1016/j.jgeb.2016.09.005

    Article  Google Scholar 

  276. R. Kumar, G. Ghoshal, A. Jain, M. Goyal, Rapid green synthesis of silver nanoparticles (agnps) using (Prunus persica) plants extract: exploring its antimicrobial and catalytic activities. J. Nanomed. Nanotechnol.08 (2017).https://doi.org/10.4172/2157-7439.1000452

  277. Y. He, F. Wei, Z. Ma, H. Zhang, Q. Yang, B. Yao, Z. Huang, J. Li, C. Zeng, Q. Zhang, Green synthesis of silver nanoparticles using seed extract of: Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Adv 7, 39842–39851 (2017). https://doi.org/10.1039/c7ra05286c

    Article  CAS  Google Scholar 

  278. S. Paosen, J. Saising, A. Wira Septama, S. Piyawan Voravuthikunchai, Green synthesis of silver nanoparticles using plants from Myrtaceae family and characterization of their antibacterial activity. Mater Lett 209, 201–206 (2017). https://doi.org/10.1016/j.matlet.2017.07.102

    Article  CAS  Google Scholar 

  279. J. Saha, A. Begum, A. Mukherjee, S. Kumar, A novel green synthesis of silver nanoparticles and their catalytic action in reduction of methylene blue dye. Sustain Environ Res 27, 245–250 (2017). https://doi.org/10.1016/j.serj.2017.04.003

    Article  CAS  Google Scholar 

  280. S. Arokiyaraj, S. Vincent, M. Saravanan, Y. Lee, Y.K. Oh, K.H. Kim, Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif Cells, Nanomedicine Biotechnol 45, 372–379 (2017). https://doi.org/10.3109/21691401.2016.1160403

    Article  CAS  Google Scholar 

  281. M.R. Shaik, M. Khan, M. Kuniyil, A. Al-Warthan, H.Z. Alkhathlan, M.R. Siddiqui, J.P. Shaik, A. Ahamed, A. Mahmood, M. Khan, S.F. Adil, Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. Extract and their microbicidal activitivites. Sustain 10, 1–14 (2018). https://doi.org/10.3390/su10040913

    Article  CAS  Google Scholar 

  282. D. Bharathi, S. Vasantharaj, V. Bhuvaneshwari, Green synthesis of silver nanoparticles using Cordia dichotoma fruit extract and its enhanced antibacterial anti-biofilm and photo catalytic activity. Mater Res Express 5, 055404 (2019). https://doi.org/10.1088/2053-1591/aac2ef

    Article  CAS  Google Scholar 

  283. G. Lakshmanan, A. Sathiyaseelan, P.T. Kalaichelvan, K. Murugesan, Plant-mediated synthesis of silver nanoparticles using fruit extract of Cleome viscosa L.: assessment of their antibacterial and anticancer activity. Karbala Int J Mod Sci 4, 61–68 (2018). https://doi.org/10.1016/j.kijoms.2017.10.007

    Article  Google Scholar 

  284. F.K. Alsammarraie, W. Wang, P. Zhou, A. Mustapha, M. Lin, Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surfaces B Biointerfaces 171, 398–405 (2018). https://doi.org/10.1016/j.colsurfb.2018.07.059

    Article  CAS  Google Scholar 

  285. R.D. Rivera-Rangel, M.P. González-Muñoz, M. Avila-Rodriguez, T.A. Razo-Lazcano, C. Solans, Green synthesis of silver nanoparticles in oil-in-water microemulsion and nano-emulsion using geranium leaf aqueous extract as a reducing agent. Colloids Surfaces A Physicochem Eng Asp 536, 60–67 (2018). https://doi.org/10.1016/j.colsurfa.2017.07.051

    Article  CAS  Google Scholar 

  286. M. Hamelian, M.M. Zangeneh, A. Amisama, K. Varmira, H. Veisi, Green synthesis of silver nanoparticles using Thymus kotschyanus extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Appl Organomet Chem 32, 1–8 (2018). https://doi.org/10.1002/aoc.4458

    Article  CAS  Google Scholar 

  287. S. Hemmati, A. Rashtiani, M.M. Zangeneh, P. Mohammadi, A. Zangeneh, H. Veisi, Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron 158, 8–14 (2019). https://doi.org/10.1016/j.poly.2018.10.049

    Article  CAS  Google Scholar 

  288. S. Pirtarighat, M. Ghannadnia, S. Baghshahi, Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostructure Chem 9, 1–9 (2019). https://doi.org/10.1007/s40097-018-0291-4

    Article  CAS  Google Scholar 

  289. R. Balachandar, P. Gurumoorthy, N. Karmegam, H. Barabadi, R. Subbaiya, K. Anand, P. Boomi, M. Saravanan, Plant-mediated synthesis, characterization and bactericidal potential of emerging silver nanoparticles using stem extract of Phyllanthus pinnatus: a recent advance in phytonanotechnology. J Clust Sci 30, 1481–1488 (2019). https://doi.org/10.1007/s10876-019-01591-y

    Article  CAS  Google Scholar 

  290. M. Behravan, A. Hossein Panahi, A. Naghizadeh, M. Ziaee, R. Mahdavi, A. Mirzapour, Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 124, 148–154 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.101

    Article  CAS  Google Scholar 

  291. W.R. Rolim, M.T. Pelegrino, L.B. de Araújo, L.S. Ferraz, F.N. Costa, J.S. Bernardes, T. Rodigues, M. Brocchi, A.B. Seabra, Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Appl Surf Sci 463, 66–74 (2019). https://doi.org/10.1016/j.apsusc.2018.08.203

    Article  CAS  Google Scholar 

  292. D. Tripathi, A. Modi, G. Narayan, S.P. Rai, Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater Sci Eng C 100, 152–164 (2019). https://doi.org/10.1016/j.msec.2019.02.113

    Article  CAS  Google Scholar 

  293. M. Rafique, I. Sadaf, M.B. Tahir, M.S. Rafique, G. Nabi, T. Iqbal, K. Sughra, Novel and facile synthesis of silver nanoparticles using Albizia procera leaf extract for dye degradation and antibacterial applications. Mater Sci Eng C 99, 1313–1324 (2019). https://doi.org/10.1016/j.msec.2019.02.059

    Article  CAS  Google Scholar 

  294. R. Banasiuk, M. Krychowiak, D. Swigon, W. Tomaszewicz, A. Michalak, A. Chylewska, M. Ziabka, M. Lapinski, B. Koscielska, M. Narajczyk, A. Krolicka, Carnivorous plants used for green synthesis of silver nanoparticles with broad-spectrum antimicrobial activity. Arab J Chem 13, 1415–1428 (2020). https://doi.org/10.1016/j.arabjc.2017.11.013

    Article  CAS  Google Scholar 

  295. Y. Gavamukulya, E.N. Maina, A.M. Meroka, E.S. Madivoli, H.A. El-Shemy, F. Wamunyokoli, G. Magoma, Green synthesis and characterization of highly stable silver nanoparticles from ethanolic extracts of fruits of Annona muricata. J Inorg Organomet Polym Mater 30, 1231–1242 (2020). https://doi.org/10.1007/s10904-019-01262-5

    Article  CAS  Google Scholar 

  296. T.T. Vo, C.H. Dang, V.D. Doan, V.S. Dang, T.D. Nguyen, Biogenic synthesis of silver and gold nanoparticles from Lactuca indica leaf extract and their application in catalytic degradation of toxic compounds. J Inorg Organomet Polym Mater 30, 388–399 (2020). https://doi.org/10.1007/s10904-019-01197-x

    Article  CAS  Google Scholar 

  297. D. Jini, S. Sharmila, Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Mater Today Proc 22, 432–438 (2020). https://doi.org/10.1016/j.matpr.2019.07.672

    Article  CAS  Google Scholar 

  298. A. Aygün, F. Gülbağça, M.S. Nas, M.H. Alma, M.H. Çalımlı, B. Ustaoglu, Y.C. Altunoglu, M.C. Baloğlu, K. Cellat, F. Şen, Biological synthesis of silver nanoparticles using Rheum ribes and evaluation of their anticarcinogenic and antimicrobial potential: a novel approach in phytonanotechnology. J. Pharm. Biomed. Anal.179 (2020).https://doi.org/10.1016/j.jpba.2019.113012

  299. A. Singh, B. Gaud, S. Jaybhaye, Optimization of synthesis parameters of silver nanoparticles and its antimicrobial activity. Mater Sci Energy Technol 3, 232–236 (2020). https://doi.org/10.1016/j.mset.2019.08.004

    Article  CAS  Google Scholar 

  300. E.B. Tirkolaee, I. Mahdavi, M.M.S. Esfahani, G.W. Weber, A robust green location-allocation-inventory problem to design an urban waste management system under uncertainty. Waste Manag 102, 340–350 (2020). https://doi.org/10.1016/j.wasman.2019.10.038

    Article  Google Scholar 

  301. Environmental Protection Agency US (2018) National Overview: Facts and Figures on Materials, Wastes and Recycling. EPA 1–13. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/national-overview-facts-and-figures-materials

  302. Linnenkoper K (2019) Ranking the biggest waste producers worldwide. https://recyclinginternational.com/business/ranking-thebiggest-waste-producers worldwide/27792 10–13

  303. P. Bhada-Tata, D.A. Hoornweg, A global review of solid waste management-review, global management, solid waste. World Bank 68135, 1–116 (2012)

    Google Scholar 

  304. A. Kumar, M.P. Sharma, Estimation of GHG emission and energy recovery potential from MSW landfill sites. Sustain Energy Technol Assessments 5, 50–61 (2014). https://doi.org/10.1016/j.seta.2013.11.004

    Article  Google Scholar 

  305. C.K. Singh, A. Kumar, S.S. Roy, Quantitative analysis of the methane gas emissions from municipal solid waste in India. Sci Rep 8, 1–8 (2018). https://doi.org/10.1038/s41598-018-21326-9

    Article  CAS  Google Scholar 

  306. H. Dhar, S. Kumar, R. Kumar, A review on organic waste to energy systems in India. Bioresour Technol 245, 1229–1237 (2017). https://doi.org/10.1016/j.biortech.2017.08.159

    Article  CAS  Google Scholar 

  307. M. Sethurajan, E.D. van Hullebusch, Y.V. Nancharaiah, Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances. J Environ Manage 211, 138–153 (2018). https://doi.org/10.1016/j.jenvman.2018.01.035

    Article  CAS  Google Scholar 

  308. S.S. Jawoor, M. Kumbar, S.A. Patil, Green synthesis of biologically active transition metal nanoparticles containing novel Schiff base via catalyst free hydrothermal reaction: structural, biological and morphology study. Appl Organomet Chem 32, 1–12 (2018). https://doi.org/10.1002/aoc.4322

    Article  CAS  Google Scholar 

  309. P. Raveendran, J. Fu, S.L. Wallen, Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125, 13940–13941 (2003)

    Article  CAS  Google Scholar 

  310. K. Anand, K. Kaviyarasu, S. Muniyasamy, S.M. Roopan, R.M. Gengan, A.A. Chuturgoon, Bio-synthesis of silver nanoparticles using agroforestry residue and their catalytic degradation for sustainable waste management. J Clust Sci 28, 2279–2291 (2017). https://doi.org/10.1007/s10876-017-1212-2

    Article  CAS  Google Scholar 

  311. K. Kaderides, A.M. Goula, Development and characterization of a new encapsulating agent from orange juice by-products. Food Res Int 100, 612–622 (2017). https://doi.org/10.1016/j.foodres.2017.07.057

    Article  CAS  Google Scholar 

  312. J. Balavijayalakshmi, V. Ramalakshmi, Carica papaya peel mediated synthesis of silver nanoparticles and its antibacterial activity against human pathogens. J Appl Res Technol 15, 413–422 (2017). https://doi.org/10.1016/j.jart.2017.03.010

    Article  Google Scholar 

  313. W. Qing, K. Chen, Y. Wang, X. Liu, M. Lu, Green synthesis of silver nanoparticles by waste tea extract and degradation of organic dye in the absence and presence of H2O2. Appl Surf Sci 423, 1019–1024 (2017). https://doi.org/10.1016/j.apsusc.2017.07.007

    Article  CAS  Google Scholar 

  314. A. Mishra, M. Sardar, Rapid biosynthesis of silver nanoparticles using sugarcane bagasse—an industrial waste. J Nanoeng Nanomanufacturing 3, 217–219 (2013). https://doi.org/10.1166/jnan.2013.1135

    Article  CAS  Google Scholar 

  315. C.H.N. de Barros, G.C.F. Cruz, W. Mayrink, L. Tasic, Bio-based synthesis of silver nanoparticles from orange waste: effects of distinct biomolecule coatings on size, morphology, and antimicrobial activity. Nanotechnol Sci Appl 11, 1–14 (2018). https://doi.org/10.2147/NSA.S156115

    Article  Google Scholar 

  316. J. Kadam, P. Dhawal, S. Barve, S. Kakodkar. Green synthesis of silver nanoparticles using cauliflower waste and their multifaceted applications in photocatalytic degradation of methylene blue dye and Hg2+ biosensing. SN Appl. Sci. 2 (2020).https://doi.org/10.1007/s42452-020-2543-4

  317. R.A. Radwan, Y.A. El-Sherif, M.M. Salama, A novel biochemical study of anti-ageing potential of Eucalyptus camaldulensis bark waste standardized extract and silver nanoparticles. Colloids Surfaces B Biointerfaces 191, 111004 (2020). https://doi.org/10.1016/j.colsurfb.2020.111004

    Article  CAS  Google Scholar 

  318. N. Yang, W. Li, Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind Crop Prod 48, 81–88 (2013). https://doi.org/10.1016/j.indcrop.2013.04.001

    Article  CAS  Google Scholar 

  319. P. Sivakumar, P. Sivakumar, K. Anbarasu, K. Pandian, S. Renganathan, Synthesis of silver nanorods from food industrial waste and their application in improving the keeping quality of milk. Ind Eng Chem Res 52, 17676–17681 (2013). https://doi.org/10.1021/ie4009327

    Article  CAS  Google Scholar 

  320. A.K. Jha, K. Prasad, Synthesis of silver nanoparticles employing fish processing discard: an eco-amenable approach. J Chin Adv Mater Soc 2, 179–185 (2014). https://doi.org/10.1080/22243682.2014.930796

    Article  CAS  Google Scholar 

  321. A. Devadiga, K.V. Shetty, M.B. Saidutta, Timber industry waste-teak (Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles. Int Nano Lett 5, 205–214 (2015). https://doi.org/10.1007/s40089-015-0157-4

    Article  CAS  Google Scholar 

  322. H. Xu, L. Wang, H. Su, L. Gu, T. Han, F. Meng, C. Liu, Making good use of food wastes: green synthesis of highly stabilized silver nanoparticles from grape seed extract and their antimicrobial activity. Food Biophys 10, 12–18 (2014). https://doi.org/10.1007/s11483-014-9343-6

    Article  Google Scholar 

  323. P. Dauthal, M. Mukhopadhyay, Agro-industrial waste-mediated synthesis and characterization of gold and silver nanoparticles and their catalytic activity for 4-nitroaniline hydrogenation. Korean J Chem Eng 32, 837–844 (2015). https://doi.org/10.1007/s11814-014-0277-y

    Article  CAS  Google Scholar 

  324. S.V. Jaybhaye, Antimicrobial activity of silver nanoparticles synthesized from waste vegetable fibers. Mater Today Proc 2, 4323–4327 (2015). https://doi.org/10.1016/j.matpr.2015.10.018

    Article  Google Scholar 

  325. K. Deekonda, S. Muniyandy, Y.Y. Lim, P. Janarthanan, Electron beam radiation mediated green synthesis of silver nanoparticles using carboxymethyl sago pulp obtained from sago waste. Polymer (Guildf) 86, 147–156 (2016). https://doi.org/10.1016/j.polymer.2016.01.048

    Article  CAS  Google Scholar 

  326. H. Dang, D. Fawcett, G.E.J. Poinern, Biogenic synthesis of silver nanoparticles from waste banana plant stems and their antibacterial activity against Escherichia coli and Staphylococcus Epidermis. Int J Res Med Sci 5, 3769 (2017). https://doi.org/10.18203/2320-6012.ijrms20173947

    Article  Google Scholar 

  327. S. Sinsinwar, M.K. Sarkar, K.R. Suriya, P. Nithyanand, V. Vadivel, Use of agricultural waste (coconut shell) for the synthesis of silver nanoparticles and evaluation of their antibacterial activity against selected human pathogens. Microb Pathog 124, 30–37 (2018). https://doi.org/10.1016/j.micpath.2018.08.025

    Article  CAS  Google Scholar 

  328. S. Ahmed, G. Kaur, P. Sharma, S. Singh, S. Ikram. Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial , antioxidant and cytotoxic activities. J. Econ. Financ. Adm. Sci. (2018).https://doi.org/10.1016/j.jab.2018.02.002

  329. B.A. Omran, H.N. Nassar, N.A. Fatthallah, A. Hamdy, E.H. El-Shatoury, N.S. El-Gendy, Waste upcycling of Citrus sinensis peels as a green route for the synthesis of silver nanoparticles. Energy Sources, Part A Recover Util Environ Eff 40, 227–236 (2018). https://doi.org/10.1080/15567036.2017.1410597

    Article  CAS  Google Scholar 

  330. R. Mythili, T. Selvankumar, S. Kamala-Kannan, C. Sudhakar, F. Ameen, A. Al-Sabri, K. Selvam, M. Govarthanan, H. Kim, Utilization of market vegetable waste for silver nanoparticle synthesis and its antibacterial activity. Mater Lett 225, 101–104 (2018). https://doi.org/10.1016/j.matlet.2018.04.111

    Article  CAS  Google Scholar 

  331. P. Sudhakar, H. Soni, Catalytic reduction of nitrophenols using silver nanoparticles-supported activated carbon derived from agro-waste. J Environ Chem Eng 6, 28–36 (2018). https://doi.org/10.1016/j.jece.2017.11.053

    Article  CAS  Google Scholar 

  332. G. Das, J.K. Patra, T. Debnath, A. Ansari, H.S. Shin, Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS One 14, 1–19 (2019). https://doi.org/10.1371/journal.pone.0220950

    Article  CAS  Google Scholar 

  333. K.M. Soto, C.T. Quezada-Cervantes, M. Hernández-Iturriaga, G. Luna-Bárcenas, R. Vazquez-Duhalt, S. Mendoza, Fruit peels waste for the green synthesis of silver nanoparticles with antimicrobial activity against foodborne pathogens. Lwt 103, 293–300 (2019). https://doi.org/10.1016/j.lwt.2019.01.023

    Article  CAS  Google Scholar 

  334. J.K. Patra, G. Das, H.S. Shin, Facile green biosynthesis of silver nanoparticles using Pisum sativum L. outer peel aqueous extract and its antidiabetic, cytotoxicity, antioxidant, and antibacterial activity. Int J Nanomedicine 14, 6679–6690 (2019). https://doi.org/10.2147/IJN.S212614

    Article  CAS  Google Scholar 

  335. C. Vishwasrao, B. Momin, L. Ananthanarayan, Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste Biomass Valorization 10, 2353–2363 (2019). https://doi.org/10.1007/s12649-018-0230-0

    Article  CAS  Google Scholar 

  336. R.A. Bapat, T.V. Chaubal, C.P. Joshi, P.R. Bapat, H. Choudhury, M. Pandey, B. Gorain, P. Kesharwani, An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C 91, 881–898 (2018). https://doi.org/10.1016/j.msec.2018.05.069

    Article  CAS  Google Scholar 

  337. S. Khorrami, A. Zarrabi, M. Khaleghi, M. Danaei, M.R. Mozafari, Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine 13, 8013–8024 (2018). https://doi.org/10.2147/IJN.S189295

    Article  CAS  Google Scholar 

  338. V.S. Ramkumar, A. Pugazhendhi, K. Gopalakrishnan, P. Sivagurunathan, G.D. Saratale, T.N. Dung, E. Kannapiran, Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnol Reports 14, 1–7 (2017). https://doi.org/10.1016/j.btre.2017.02.001

    Article  Google Scholar 

  339. N. Durán, G. Nakazato, A.B. Seabra, Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments. Appl Microbiol Biotechnol 100, 6555–6570 (2016). https://doi.org/10.1007/s00253-016-7657-7

    Article  CAS  Google Scholar 

  340. I.X. Yin, J. Zhang, I.S. Zhao, M.L. Mei, Q. Li, C.H. Chu, The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine 15, 2555–2562 (2020). https://doi.org/10.2147/IJN.S246764

    Article  CAS  Google Scholar 

  341. A. Panáček, L. Kvítek, M. Smékalová, R. Večeřová, M. Kolář, M. Röderová, F. Dyčka, M. Šebela, R. Prucek, O. Tomanec, R. Zbořil, Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13, 65–71 (2018). https://doi.org/10.1038/s41565-017-0013-y

    Article  CAS  Google Scholar 

  342. L.M. Stabryla, K.A. Johnston, N.A. Diemler, V.S. Cooper, J.E. Millstone, S.J. Haig, L.M. Gilbertson, Role of bacterial motility in differential resistance mechanisms of silver nanoparticles and silver ions. Nat. Nanotechnol. (2021).https://doi.org/10.1038/s41565-021-00929-w

  343. A. Salleh, R. Naomi, N.D. Utami, A.W. Mohammad, E. Mahmoudi, N. Mustafa, M.B. Fauzi, The potential of silver nanoparticles for antiviral and antibacterial applications: a mechanism of action. Nanomaterials 10, 1–20 (2020). https://doi.org/10.3390/nano10081566

    Article  CAS  Google Scholar 

  344. A. Gogos, K. Knauer, T.D. Bucheli, Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. J Agric Food Chem 60, 9781–9792 (2012). https://doi.org/10.1021/jf302154y

    Article  CAS  Google Scholar 

  345. A. Dror-Ehre, H. Mamane, T. Belenkova, G. Markovich, A. Adin, Silver nanoparticle-E. coli colloidal interaction in water and effect on E. coli survival. J Colloid Interface Sci 339, 521–526 (2009). https://doi.org/10.1016/j.jcis.2009.07.052

    Article  CAS  Google Scholar 

  346. W.R. Li, X.B. Xie, Q.S. Shi, S.S. Duan, Y.S. Ouyang, Y.B. Chen, Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24, 135–141 (2011). https://doi.org/10.1007/s10534-010-9381-6

    Article  CAS  Google Scholar 

  347. K. Kalimuthu, C. Panneerselvam, C. Chou, L.C. Tseng, K. Murugan, K.H. Tsai, A.A. Alarfaj, A. Higuchi, A. Canale, J.S. Hwang, G. Benelli, Control of dengue and Zika virus vector Aedes aegypti using the predatory copepod Megacyclops formosanus: Synergy with Hedychium coronarium-synthesized silver nanoparticles and related histological changes in targeted mosquitoes. Process Saf Environ Prot 109, 82–96 (2017). https://doi.org/10.1016/j.psep.2017.03.027

    Article  CAS  Google Scholar 

  348. L. Marchiol, Synthesis of metal nanoparticles in living plants. Ital J Agron 7, 274–282 (2012). https://doi.org/10.4081/ija.2012.e37

    Article  Google Scholar 

  349. S. Chen, H. Gao, W. Shen, C. Lu, Q. Yuan, Colorimetric detection of cysteine using noncrosslinking aggregation of fluorosurfactant-capped silver nanoparticles. Sensors Actuators, B Chem 190, 673–678 (2014). https://doi.org/10.1016/j.snb.2013.09.036

    Article  CAS  Google Scholar 

  350. P. Bollella, C. Schulz, G. Favero, F. Mazzei, R. Ludwig, L. Gorton, R. Antiochia, Green synthesis and characterization of gold and silver nanoparticles and their application for development of a third generation lactose biosensor. Electroanalysis 29, 77–86 (2017). https://doi.org/10.1002/elan.201600476

    Article  CAS  Google Scholar 

  351. G. Rosati, M. Ravarotto, M. Scaramuzza, A. De Toni, A. Paccagnella, Silver nanoparticles inkjet-printed flexible biosensor for rapid label-free antibiotic detection in milk. Sensors Actuators, B Chem 280, 280–289 (2019). https://doi.org/10.1016/j.snb.2018.09.084

    Article  CAS  Google Scholar 

  352. Y.P. Wei, Y.W. Zhang, C.J. Mao, A silver nanoparticle-assisted signal amplification electrochemiluminescence biosensor for highly sensitive detection of mucin 1. J Mater Chem B 8, 2471–2475 (2020). https://doi.org/10.1039/c9tb02773d

    Article  CAS  Google Scholar 

  353. S.Y. Yeo, H.J. Lee, S.H. Jeong, Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 38, 2143–2147 (2003). https://doi.org/10.1023/A:1023767828656

    Article  CAS  Google Scholar 

  354. N. Durán, P.D. Marcato, G.I.H. De Souza, O.L. Alves, E. Esposito, Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3, 203–208 (2007). https://doi.org/10.1166/jbn.2007.022

    Article  CAS  Google Scholar 

  355. S.S. Salem, E.F. El-Belely, G. Niedbała, M.M. Alnoman, S.E. Hassan, A.M. Eid, T.I. Shaheen, A. Elkelish, A. Fouda, Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials 10, 1–20 (2020). https://doi.org/10.3390/nano10102082

    Article  CAS  Google Scholar 

  356. A. Syafiuddin, M.A. Fulazzaky, S. Salmiati, M. Roestamy, M. Fulazzaky, K. Sumeru, Z. Yusop, Sticky silver nanoparticles and surface coatings of different textile fabrics stabilised by Muntingia calabura leaf extract. SN Appl Sci 2, 1–10 (2020). https://doi.org/10.1007/s42452-020-2534-5

    Article  CAS  Google Scholar 

  357. M. Maghimaa, S.A. Alharbi, Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity. J Photochem Photobiol B Biol 204, 111806 (2020). https://doi.org/10.1016/j.jphotobiol.2020.111806

    Article  CAS  Google Scholar 

  358. Y. Li, Y. Wu, B.S. Ong, Facile synthesis of silver nanoparticles useful for fabrication of high-conductivity elements for printed electronics. J Am Chem Soc 127, 3266–3267 (2005). https://doi.org/10.1021/ja043425k

    Article  CAS  Google Scholar 

  359. D. Chen, X. Qiao, X. Qiu, J. Chen, Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. J Mater Sci 44, 1076–1081 (2009). https://doi.org/10.1007/s10853-008-3204-y

    Article  CAS  Google Scholar 

  360. Y. Cai, X. Piao, W. Gao, Z. Zhang, E. Nie, Z. Sun, Large-scale and facile synthesis of silver nanoparticles via a microwave method for a conductive pen. RSC Adv 7, 34041–34048 (2017). https://doi.org/10.1039/c7ra05125e

    Article  CAS  Google Scholar 

  361. N. Matsuhisa, D. Inoue, P. Zalar, H. Jin, Y. Matsuba, A. Itoh, T. Yokota, D. Hashizume, T. Someya, Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nat Mater 16, 834–840 (2017). https://doi.org/10.1038/nmat4904

    Article  CAS  Google Scholar 

  362. L. Wang, X. Pan, F. Wang, L. Yang, L. Liu, Structure-properties relationships investigation on the azo dyes derived from benzene sulfonamide intermediates. Dye Pigment 76, 636–645 (2008). https://doi.org/10.1016/j.dyepig.2006.12.003

    Article  CAS  Google Scholar 

  363. S. Joseph, B. Mathew, Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J Mol Liq 204, 184–191 (2015). https://doi.org/10.1016/j.molliq.2015.01.027

    Article  CAS  Google Scholar 

  364. A.T. Babu, R. Antony, Green synthesis of silver doped nano metal oxides of zinc & copper for antibacterial properties, adsorption, catalytic hydrogenation & photodegradation of aromatics. J. Environ. Chem. Eng. 7 (2019).https://doi.org/10.1016/j.jece.2018.102840

  365. M. Aravind, A. Ahmad, I. Ahmad, M. Amalanathan, K. Naseem, S.M. Mary, C. Parvathiraja, S. Hussain, T.S. Algarni, M. Pervaiz, M. Zuber, Critical green routing synthesis of silver NPs using jasmine flower extract for biological activities and photocatalytical degradation of methylene blue. J Environ Chem Eng 9, 104877 (2021). https://doi.org/10.1016/j.jece.2020.104877

    Article  CAS  Google Scholar 

  366. N.M. Mahmoodi, J. Abdi, M. Taghizadeh, A. Taghizadeh, B. Hayati, A.A. Shekarchi, M. Vossoughi, Activated carbon/metal-organic framework nanocomposite: Preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine. J Environ Manage 233, 660–672 (2019). https://doi.org/10.1016/j.jenvman.2018.12.026

    Article  CAS  Google Scholar 

  367. S.S.F. Carvalho, N.M.F. Carvalho, Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis. J Environ Manage 187, 82–88 (2017). https://doi.org/10.1016/j.jenvman.2016.11.032

    Article  CAS  Google Scholar 

  368. C.D. Raman, S. Kanmani, Textile dye degradation using nano zero valent iron: a review. J Environ Manage 177, 341–355 (2016). https://doi.org/10.1016/j.jenvman.2016.04.034

    Article  CAS  Google Scholar 

  369. J.M. Köhler, L. Abahmane, J. Wagner, J. Albert, G. Mayer, Preparation of metal nanoparticles with varied composition for catalytical applications in microreactors. Chem Eng Sci 63, 5048–5055 (2008). https://doi.org/10.1016/j.ces.2007.11.038

    Article  CAS  Google Scholar 

  370. A. Gangula, R. Podila, R. M, C. Janardhana, A.M. Rao, Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from breynia rhamnoides. Langmuir 27, 15268–15274 (2011). https://doi.org/10.1021/la2034559

    Article  CAS  Google Scholar 

  371. W.H. Eisa, M.F. Zayed, B. Anis, L.M. Abbas, S.S. Ali, A.M. Mostafa, Clean production of powdery silver nanoparticles using Zingiber officinale: the structural and catalytic properties. J Clean Prod 241, 118398 (2019). https://doi.org/10.1016/j.jclepro.2019.118398

    Article  CAS  Google Scholar 

  372. S. Pandey, J.Y. Do, J. Kim, M. Kang, Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst. Carbohydr Polym 230, 115597 (2020)

    Article  CAS  Google Scholar 

  373. F. Pilaquinga, B. Morejón, D. Ganchala, J. Morey, N. Piña, A. Debut, M. Neira, Green synthesis of silver nanoparticles using Solanum mammosum L. (Solanaceae) fruit extract and their larvicidal activity against Aedes aegypti L. (Diptera: Culicidae). PLoS One 14, 1–13 (2019). https://doi.org/10.1371/journal.pone.0224109

    Article  CAS  Google Scholar 

  374. A.A. Yaqoob, H. Ahmad, T. Parveen, A. Ahmad, M. Oves, I.M. Ismail, H.A. Qari, K. Umar, M.N. Mohamad Ibrahim, Recent advances in metal decorated nanomaterials and their various biological applications: a review. Front Chem 8, 1–23 (2020). https://doi.org/10.3389/fchem.2020.00341

    Article  CAS  Google Scholar 

  375. S. Arora, J. Jain, J.M. Rajwade, K.M. Paknikar, Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179, 93–100 (2008). https://doi.org/10.1016/j.toxlet.2008.04.009

    Article  CAS  Google Scholar 

  376. S.H. Shin, M.K. Ye, H.S. Kim, H.S. Kang, The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7, 1813–1818 (2007). https://doi.org/10.1016/j.intimp.2007.08.025

    Article  CAS  Google Scholar 

  377. M.A. Munger, P. Radwanski, G.C. Hadlock, G. Stoddard, A. Shaaban, J. Falconer, D.W. Grainger, C.E. Deering-Rice, In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomed Nanotechnol, Biol Med 10, 1–9 (2014). https://doi.org/10.1016/j.nano.2013.06.010

    Article  CAS  Google Scholar 

  378. Z.C. Xing, W.P. Chae, J.Y. Baek, In vitro assessment of antibacterial activity and cytocompatibility of silver-containing phbv nanofibrous scaffolds for tissue engineering. Biomacromol 11, 1248–1253 (2010). https://doi.org/10.1021/bm1000372

    Article  CAS  Google Scholar 

  379. V. Alt, T. Bechert, P. Steinrücke, M. Wagener, P. Seidel, E. Dingeldein, E. Domann, R. Schnettler, An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25, 4383–4391 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.078

    Article  CAS  Google Scholar 

  380. E. Locatelli, M. Naddaka, C. Uboldi, G. Loudos, E. Fragogeorgi, V. Molinari, A. Pucci, T. Tsotakos, D. Psimadas, J. Ponti, M.C. Franchini, Targeted delivery of silver nanoparticles and alisertib: In vitro and in vivo synergistic effect against glioblastoma. Nanomedicine 9, 839–849 (2014). https://doi.org/10.2217/nnm.14.1

    Article  CAS  Google Scholar 

  381. N.E.A. El-Naggar, M.H. Hussein, A.A. El-Sawah, Phycobiliprotein-mediated synthesis of biogenic silver nanoparticles, characterization, in vitro and in vivo assessment of anticancer activities. Sci Rep 8, 1–20 (2018). https://doi.org/10.1038/s41598-018-27276-6

    Article  CAS  Google Scholar 

  382. F. Furno, K.S. Morley, B. Wong, B.L. Sharp, P.L. Arnold, S.M. Howdle, R. Bayston, P.D. Brown, P.D. Winship, H.J. Reid, Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54, 1019–1024 (2004). https://doi.org/10.1093/jac/dkh478

    Article  CAS  Google Scholar 

  383. K. Galiano, C. Pleifer, K. Engelhardt, G. Brössner, P. Lackner, C. Huck, C. Lass-Flörl, A. Obwegeser, Silver segregation and bacterial growth of intraventricular catheters impregnated with silver nanoparticles in cerebrospinal fluid drainages. Neurol Res 30, 285–287 (2008). https://doi.org/10.1179/016164107X229902

    Article  CAS  Google Scholar 

  384. M.R. El-Aassar, O.M. Ibrahim, M.M.G. Fouda, N.G. El-Beheri, M.M. Agwa, Wound healing of nanofiber comprising Polygalacturonic/Hyaluronic acid embedded silver nanoparticles: in-vitro and in-vivo studies. Carbohydr Polym 238, 116175 (2020). https://doi.org/10.1016/j.carbpol.2020.116175

    Article  CAS  Google Scholar 

  385. O. Zachar, Formulations for COVID-19 early stage treatment via silver nanoparticles inhalation delivery at home and hospital. Sci Prepr 14 (2020). https://doi.org/10.14293/S2199-1006.1.SOR-.PPHBJEO.v1

  386. M. Antonelli, G. De Pascale, V.M. Ranieri, P. Pelaia, R. Tufano, O. Piazza, A. Zangrillo, A. Ferrario, A. De Gaetano, E. Guaglianone, G. Donelli, Comparison of triple-lumen central venous catheters impregnated with silver nanoparticles (AgTive®) vs conventional catheters in intensive care unit patients. J Hosp Infect 82, 101–107 (2012). https://doi.org/10.1016/j.jhin.2012.07.010

    Article  CAS  Google Scholar 

  387. M. Miranda, C. Cardoso, C Vitorino, A regulatory framework for the development of topical nanomedicines.Theory Appl. Nonparenteral Nanomed. 55–78 (2021).https://doi.org/10.1016/B978-0-12-820466-5.00003-X

  388. N. Farhadian, R. Usefi Mashoof, S. Khanizadeh, E. Ghaderi, M. Farhadian, A. Miresmaeili, Streptococcus mutans counts in patients wearing removable retainers with silver nanoparticles vs those wearing conventional retainers: a randomized clinical trial. Am J Orthod Dentofac Orthop 149, 155–160 (2016). https://doi.org/10.1016/j.ajodo.2015.07.031

    Article  Google Scholar 

  389. M. Ziąbka, K. Malec, Polymeric middle ear prosthesis enriched with silver nanoparticles–first clinical results. Expert Rev Med Devices 16, 325–331 (2019). https://doi.org/10.1080/17434440.2019.1596796

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors of the manuscript received financial and infrastructural support from Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Chaudhary.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D., Gulati, S.S., Sharma, N. et al. Sustainable synthesis of silver nanoparticles using various biological sources and waste materials: a review. emergent mater. 5, 1649–1678 (2022). https://doi.org/10.1007/s42247-021-00292-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00292-5

Keywords

Navigation