Skip to main content

Advertisement

Log in

Biosynthesis of Silver Nanoparticles by Geotricum sp.

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Nanoparticles are usually 1–100 nm in each spatial dimension considered as building blocks of the next generation of optoelectronics, electronics, and various chemical and biochemical sensors. In the synthesis of nanoparticles use of microorganisms emerges as an eco-friendly and exciting approach that reduce waste products (ultimately leading to atomically precise molecular manufacturing with zero waste); the use of nanomaterials as catalysts for greater efficiency in current manufacturing processes by minimizing or eliminating the use of toxic materials (green chemistry principles); the use of nanomaterials and nanodevices to reduce pollution (e.g. water and air filters); and the use of nanomaterials for more efficient alternative energy production (e.g. solar and fuel cells). Fungi have many advantages for nanoparticle synthesis compared with other organisms. In this study, Geotricum sp. found to successfully produce Ag nanoparticles. Geotricum sp. was grown in SDA (Sabro Dextrose Agar) medium at 25 ± 1 °C for 96 h. The mycelia were used to convert silver nitrate solution into nano-silver. Silver nanoparticles were synthesized using these fungi (Geotricum sp.) extracellularly. UV–VIS spectroscopy, Atomic Force Microscopy (AFM) and Scanning Electron Microscopy images shows the nanoparticle formation in the medium. Energy-dispersive X-ray spectroscopy (EDX) also confirmed that silver nanoparticles in the range of 30–50 nm were synthesized extracellularly. FTIR analyses confirmed the presence of amide (I) and (II) bands of protein as capping and stabilizing agent on the surface of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Riddina, M. Gerickeb, and C. G. Whiteleya (2010). EMT J. 46, 501–505.

    Google Scholar 

  2. N. Pugazhenthiran and S. Anandan (2009). J. Nanopart. Res. 11, 1811–1815.

    Article  CAS  Google Scholar 

  3. M. Rai and A. Yadav, in Applied Mycology (CAB International, New York, 2009).

  4. P. Mukherjee and A. Ahmad (2001). Nano Lett. 1, (10), 515–519.

    Article  CAS  Google Scholar 

  5. S. Murali (2003). Curr. Sci. 85, 2.

    Google Scholar 

  6. M. Karbasian, S. M. Atyabi, and S. D. Siadat (2008). Am. J. Agric. Biol. Sci. 3, (1), 433–437.

    Article  Google Scholar 

  7. K. B. Narayanan and N. Sakthivel (2010). Adv. Colloid Interface Sci. 156, 1–13.

    Article  CAS  Google Scholar 

  8. P. Mohanpuria and N. K. Rana (2008). J. Nanopart. Res. 10, 507–517.

    Article  CAS  Google Scholar 

  9. N. Saifuddin, C. W. Wong and A. A. Nur (2009). EJ. Chem. 6(1), 61–70.

    CAS  Google Scholar 

  10. N. Durán, P. D. Marcato, and O. L. Alves (2005). J. Nanobiotechnol. 3, 8.

    Article  Google Scholar 

  11. D. Mandal, M. E. Bolander, and D. Mukhopadhyay (2006). Appl. Microbiol. Biotechnol. 69, 485–492.

    Article  CAS  Google Scholar 

  12. L. Sintubin and W. De Windt (2009). Appl. Microbiol. Biotechnol. 84, 741–749.

    Article  CAS  Google Scholar 

  13. K. C. Bhainsa and S. F. D’Souza (2006). Colloids Surf. Biointerfaces 47, 160–164.

    Article  CAS  Google Scholar 

  14. R. Varshney, A. N. Mishra, S. Bhadauria, and M. S. Gaur (2009). Dig. J. Nanomater. Biostruct. 4, (2), 349–355.

    Google Scholar 

  15. A. Nanda and M. Saravanan (2009). Nanomed. Nanotechnol. Biol. Med. 5, 452–456.

    Article  CAS  Google Scholar 

  16. K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh (2010). Nanomed. Nanotechnol. Biol. Med. 6, (2), 257–262.

    Article  CAS  Google Scholar 

  17. A. K. Jha and K. Prasad (2010). Biotechnol. J. 5, (3), 285–291.

    Article  CAS  Google Scholar 

  18. Balaji Dasaratrao Sawle et al (2008). Sci. Technol. Adv. Mater. 9, 035012.

    Google Scholar 

  19. A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Colloids Surf. B 28, 313–318.

    Article  CAS  Google Scholar 

  20. K. Kalishwaralala, V. Deepaka, and S. B. Ram Kumar Pandian (2010). Colloids Surf. B Biointerfaces 77, 257–262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Ramezani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jebali, A., Ramezani, F. & Kazemi, B. Biosynthesis of Silver Nanoparticles by Geotricum sp.. J Clust Sci 22, 225–232 (2011). https://doi.org/10.1007/s10876-011-0375-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0375-5

Keywords

Navigation