Skip to main content
Log in

Synthesize of Silver Nanoparticles by Arc Discharge Method Using Two Different Rotational Electrode Shapes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Arc discharge technique was modified by using non-traditional rotational electrode and AC applied voltage. Two different systems were designed and locally fabricated to improve the properties of prepared yields. The rotational speed of the target, shape of the electrode and type of dielectric medium have a great effect on the yield, shape, size, stability and mass production. Ethanol as a dielectric medium was used in this study and compared with published works. The yields were characterized by Particle Size Analyzer, high-resolution electron microscope (HRTEM), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray diffraction (XRD), the ultraviolet–visible spectrophotometer (UV–Vis) and Zeta potential. All characterizations show that spherical silver nanoparticles are successfully produced for both systems. The results showed that the size of the nanoparticles prepared by cylindrical rotating electrode system is (23.45 ± 0.16) compared with those produced by disk rotating electrode system with size (26.83 ± 0.44). According to the obtained data the shape of the used cathodes was greatly affected the mass production rate of the nanoparticles, it was found that the rate in case of the cylindrical cathode was (46 ± 0.6 mg/min) compared with those prepared in case of disk cathode (34 ± 0.9 mg/min) and both rotational electrodes yielded more than simple arc discharge (23 ± 0.8 mg/min).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Nasirpouri (2017). Springer Ser. Surface Sci. 62, https://doi.org/10.1007/978-3-319-44920-3_1.

    Google Scholar 

  2. J. E. Morris (ed.), Nanopackaging: Nanotechnologies and Electronics Packaging (© Springer Science + Business Media, LLC, 2008). https://doi.org/10.1007/978-0-387-47326-0_6.

  3. K. H. Tseng, M. Y. Chung, and J. L. Chiu (2018). J. Clust. Sci. 29, 215. https://doi.org/10.1007/s10876-017-1325-7.

    Article  CAS  Google Scholar 

  4. A. M. El-Khatib, M. M. Mohamed, M. S. Badawi, A. S. Doma, A. S. Mohamed, and A. A. Thabet (2018). Int. J. Adv. Res. https://doi.org/10.21474/ijar01/6819.

    Article  Google Scholar 

  5. Y. Y. Tsai, J. S. Su, and C. Y. Su (2008). Int. J. Mach. Tools Manuf. 48, 1653–1657. https://doi.org/10.1016/j.ijmachtools.2008.07.005.

    Article  Google Scholar 

  6. N. Arora and N. N. Sharma (2014). Diamond Related Mater. 50, 135–150. https://doi.org/10.1016/j.diamond.2014.10.001.

    Article  CAS  Google Scholar 

  7. A. J. Fetterman, Y. Raitses, and M. Keidar (2008). Carbon N. Y. 46, 1322–1326. https://doi.org/10.1016/j.carbon.2008.05.018.

    Article  CAS  Google Scholar 

  8. T. Zhao, Y. Liu, and J. Zhu (2005). Carbon N. Y. 43, 2907–2912. https://doi.org/10.1016/j.carbon.2005.06.005.

    Article  CAS  Google Scholar 

  9. M. I. Mohammad, A. A. Moosa, J. H. Potgieter, and M. K. Ismael (2013). ISRN Nanomater. https://doi.org/10.1155/2013/785160.

    Article  Google Scholar 

  10. L. Zhen-Hua,W. Miao,W. Xin-Qing, Z. Hai-Bin, L. Huan-Ming, Y. Ando (2002). Chin. Phys. Lett. 19, 91–93. http://cpl.iphy.ac.cn/Y2002/V19/I1/091.

  11. N. R. Haghighi and R. Poursalehi (2015). Procedia, Mater. Sci. 11, 347–351. https://doi.org/10.1016/j.mspro.2015.11.119.

    Article  CAS  Google Scholar 

  12. K. H. Tseng, Y. C. Chen, and J. J. Shyue (2011). J. Nanopart Res. 13, 1865. https://doi.org/10.1007/s11051-010-9937-y.

    Article  CAS  Google Scholar 

  13. T. Charinpanitkul, W. Tanthapanichakoon, and N. Sano (2009). Curr. Appl. Phys. 9, 629. https://doi.org/10.1016/j.cap.2008.05.018.

    Article  Google Scholar 

  14. Y. Su, Y. Zhang, H. Wei, B. Qian, Z. Yang, and Y. Zhang (2012). Phys. E Low-dimensional Syst. Nanostruct. 44, 1548. https://doi.org/10.1016/j.physe.2012.03.025.

    Article  CAS  Google Scholar 

  15. A. M. El-Khatib, Z. F. Ghatass, M. S. Badawi, M. El-Khatib, M. M. Mohamed (2018). Int. J. Sci. Eng. Res. 9.

  16. B. D. Hall, D. Zanchet, and D. Ugarte (2000). J. Appl. Crystallogr. 33, 1335–1341. https://doi.org/10.1107/s0021889800010888.

    Article  CAS  Google Scholar 

  17. X. Pan, I. Medina-Ramirez, R. Mernaugh, and J. Liu (2010). Coll. Surf. B: Biointerfaces 77, 82. https://doi.org/10.1016/j.colsurfb.2010.01.010.

    Article  CAS  Google Scholar 

  18. S. Bhattacharjee (2016). J. Controll. Release 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017.

    Article  CAS  Google Scholar 

  19. D. Paramelle, A. Sadovoy, S. Gorelik, P. Free, J. Hobley, and D. G. Fernig (2014). https://doi.org/10.1039/c4an00978a.

    Article  CAS  PubMed  Google Scholar 

  20. S. Ratan, D. Gautam, and Ramendhu (2010). J. Exp. Nanosci. https://doi.org/10.1080/17458080903583915.

    Article  Google Scholar 

  21. J. D. J. Ingle and S. R. Crouch Spectrochemical Analysis (Prentice Hall, New Jersey, 1988).

    Google Scholar 

  22. Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow, and S. Iijima (2001). Diamond Relat. Mater. 10, 1185–1189. https://doi.org/10.1016/S0925-9635(00)00513-6.

    Article  CAS  Google Scholar 

  23. X. Cai, H. Cong, and C. Liu (2012). Carbon N. Y. 50, 2726–2730. https://doi.org/10.1016/j.carbon.2012.02.031.

    Article  CAS  Google Scholar 

  24. G. Raniszewski, L. Szymanski, Z. Kolacinski (2012) Carbon nanotubes synthesis by electric arc plasma with external magnetic field, 4th International Conference Nanocon, pp. 131–137.

  25. H. Zhang, G. Zou, and L. Liu (2017). J. Mater. Sci. 52, 3375. https://doi.org/10.1007/s10853-016-0626-9.

    Article  CAS  Google Scholar 

  26. M. Miranzadeh and M. Kassaee (2014). Chem. Eng. J. 257, 105–111. https://doi.org/10.1016/j.cej.2014.06.088.

    Article  CAS  Google Scholar 

  27. H. Zhang, G. Zou, L. Liu, Y. Li, H. Tong, Z. Sun, and Y. N. Zhou (2016). Appl. Phys. A 122, 896. https://doi.org/10.1007/s00339-016-0424-x.

    Article  CAS  Google Scholar 

  28. D.-C. Tien, L.-C. Chen, N. Van Thai, and S. Ashraf (2010). J. Nanomater. https://doi.org/10.1155/2010/634757.

    Article  Google Scholar 

  29. K.-H. Tseng, C.-J. Chou, T.-C. Liu, D.-C. Tien, T.-C. Wu, and L. Stobinski (2018). Adv. Sci. Eng. Mater. https://doi.org/10.1155/2018/3240959.

    Article  Google Scholar 

  30. B. C. Sih and Michael (2006). J. Phys. Chem. B. https://doi.org/10.1021/jp065213a.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Physics Department, Faculty of Science, Alexandria University for providing instrumental and laboratory facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Elkhatib.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Khatib, A.M., Badawi, M.S., Ghatass, Z.F. et al. Synthesize of Silver Nanoparticles by Arc Discharge Method Using Two Different Rotational Electrode Shapes. J Clust Sci 29, 1169–1175 (2018). https://doi.org/10.1007/s10876-018-1430-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1430-2

Keywords

Navigation