Skip to main content
Log in

Recent Advances in the Utilization of Brown Macroalgae as Feedstock for Microbial Biorefinery

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A stable and economical supply of biomass is essential for meeting the increasing demand for bioproducts. In this regard, numerous studies on the utilization of macroalgal biomass as feedstock are in progress to exploit its high productivity, high carbohydrate content, low cost, and easy pretreatment. Macroalgal biomass is classified as green, red, and brown depending on the color of its photosynthetic pigments and chlorophyll. Owing to considerable differences in ecology, habitat, and carbohydrate composition, it is necessary to study each macroalgae type as a separate and distinct biomass feedstock. Among them, the utilization of brown macroalgae as a feedstock is expected to not only reduce process costs but also alleviate environmental pollution. Therefore, in this review, we provide a comprehensive and detailed summary of recent advances in the microbial bioconversion of brown macroalgae. Brown macroalgal carbohydrates primarily comprise mannitol, laminarin, alginate, and fucoidan, which require different hydrolases or catabolic enzymes for microbial bioconversion. Therefore, depending on the carbohydrate type, relevant papers were identified and summarized. Given the numerous reports on the successful and efficient utilization of alginate, which is the most abundant carbohydrate in brown macroalgae, we reasoned that the potential of brown macroalgae-based biorefinery is relatively high. Moreover, follow-up studies can contribute to enhance the economic feasibility and commercialization of brown macroalgae-based biorefinery products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biddy, M. J., C. Scarlata, and C. Kinchin (2016) Chemicals from Biomass: A Market Assessment of Bioproducts with Near-Term Potential. National Renewable Energy Laboratory, Golden, CO, USA.

    Book  Google Scholar 

  2. OECD and Food and Agriculture Organization of the United Nations (2020) OECD-FAO Agricultural Outlook 2020–2029. OECD, Paris, France.

    Google Scholar 

  3. Amoah, J., P. Kahar, C. Ogino, and A. Kondo (2019) Bioenergy and biorefinery: feedstock, biotechnological conversion, and products. Biotechnol. J. 14: e1800494.

    Article  Google Scholar 

  4. Wagemann, K. and N. Tippkötter (2019) Biorefineries. Springer International Publishing, Cham, Switzerland.

    Book  Google Scholar 

  5. Singh, A., P. S. Nigam, and J. D. Murphy (2011) Renewable fuels from algae: an answer to debatable land based fuels. Bioresour. Technol. 102: 10–16.

    Article  CAS  Google Scholar 

  6. Singhvi, M. S. and D. V. Gokhale (2019) Lignocellulosic biomass: hurdles and challenges in its valorization. Appl. Microbiol. Biotechnol. 103: 9305–9320.

    Article  CAS  Google Scholar 

  7. Jang, S.-S., Y. Shirai, M. Uchida, and M. Wakisaka (2012) Production of mono sugar from acid hydrolysis of seaweed. Afr. J. Biotechnol. 11: 1953–1963.

    CAS  Google Scholar 

  8. van Hal, J. W., W. J. J. Huijgen, and A. M. López-Contreras (2014) Opportunities and challenges for seaweed in the biobased economy. Trends Biotechnol. 32: 231–233.

    Article  CAS  Google Scholar 

  9. Kraan, S. (2012) Algal polysaccharides, novel applications and outlook. pp. 489–532. In: C.-F. Chang (ed.). Carbohydrates — Comprehensive Studies on Glycobiology and Glycotechnology. IntechOpen, London, UK.

    Google Scholar 

  10. Macreadie, P. I., A. Anton, J. A. Raven, N. Beaumont, R. M. Connolly, D. A. Friess, J. J. Kelleway, H. Kennedy, T. Kuwae, P. S. Lavery, C. E. Lovelock, D. A. Smale, E. T. Apostolaki, T. B. Atwood, J. Baldock, T. S. Bianchi, G. L. Chmura, B. D. Eyre, J. W. Fourqurean, J. M. Hall-Spencer, M. Huxham, I. E. Hendriks, D. Krause-Jensen, D. Laffoley, T. Luisetti, N. Marbà, P. Masque, K. J. McGlathery, J. P. Megonigal, D. Murdiyarso, B. D. Russell, R. Santos, O. Serrano, B. R. Silliman, K. Watanabe, and C. M. Duarte (2019) The future of Blue Carbon science. Nat. Commun. 10: 3998. (Erratum published 2019, Nat. Commun. 10: 5145)

    Article  Google Scholar 

  11. Álvarez-Viñas, M., N. Flórez-Fernández, M. D. Torres, and H. Domínguez (2019) Successful approaches for a red seaweed biorefinery. Mar. Drugs 17: 620.

    Article  Google Scholar 

  12. Tiwari, B. K. and D. J. Troy (2015) Seaweed sustainability — food and non-food applications. pp. 1–6. In: B. K. Tiwari and D. J. Troy (eds.). Seaweed Sustainability: Food and Non-Food Applications. Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  13. Hoffmann, S. L., L. Jungmann, S. Schiefelbein, L. Peyriga, E. Cahoreau, J.-C. Portais, J. Becker, and C. Wittmann (2018) Lysine production from the sugar alcohol mannitol: design of the cell factory Corynebacterium glutamicum SEA-3 through integrated analysis and engineering of metabolic pathway fluxes. Metab. Eng. 47: 475–487.

    Article  CAS  Google Scholar 

  14. Torres, M. D., S. Kraan, and H. Domínguez (2019) Seaweed biorefinery. Rev. Environ. Sci. Biotechnol. 18: 335–388.

    Article  CAS  Google Scholar 

  15. Poblete-Castro, I., S.-L. Hoffmann, J. Becker, and C. Wittmann (2020) Cascaded valorization of seaweed using microbial cell factories. Curr. Opin. Biotechnol. 65: 102–113.

    Article  CAS  Google Scholar 

  16. Roesijadi, G., S. B. Jones, L. J. Snowden-Swan, and Y. Zhu (2010) Macroalgae as a Biomass Feedstock: A Preliminary Analysis. Pacific Northwest National Laboratory, U.S. Department of Energy, Richland, WA, USA.

    Book  Google Scholar 

  17. Sudhakar, K., R. Mamat, M. Samykano, W. H. Azmi, W. F. W. Ishak, and T. Yusaf (2018) An overview of marine macroalgae as bioresource. Renew. Sustain. Energy Rev. 91: 165–179.

    Article  Google Scholar 

  18. Aryee, A. N., D. Agyei, and T. O. Akanbi (2018) Recovery and utilization of seaweed pigments in food processing. Curr. Opin. Food Sci. 19: 113–119.

    Article  Google Scholar 

  19. Florez, J. Z., C. Camus, M. B. Hengst, and A. H. Buschmann (2017) A functional perspective analysis of macroalgae and epiphytic bacterial community interaction. Front. Microbiol. 8: 2561.

    Article  Google Scholar 

  20. Kloareg, B., Y. Badis, J. M. Cock, and G. Michel (2021) Role and evolution of the extracellular matrix in the acquisition of complex multicellularity in eukaryotes: a macroalgal perspective. Genes (Basel) 12: 1059.

    Article  CAS  Google Scholar 

  21. Barbalace, M. C., M. Malaguti, L. Giusti, A. Lucacchini, S. Hrelia, and C. Angeloni (2019) Anti-inflammatory activities of marine algae in neurodegenerative diseases. Int. J. Mol. Sci. 20: 3061.

    Article  CAS  Google Scholar 

  22. Kidgell, J. T., M. Magnusson, R. de Nys, and C. R. K. Glasson (2019) Ulvan: a systematic review of extraction, composition and function. Algal Res. 39: 101422.

    Article  Google Scholar 

  23. Rhein-Knudsen, N., M. T. Ale, and A. S. Meyer (2015) Seaweed hydrocolloid production: an update on enzyme assisted extraction and modification technologies. Mar. Drugs 13: 3340–3359.

    Article  Google Scholar 

  24. Zhang, X. and M. Thomsen (2019) Biomolecular composition and revenue explained by interactions between extrinsic factors and endogenous rhythms of Saccharina latissima. Mar. Drugs 17: 107.

    Article  CAS  Google Scholar 

  25. Mohd Fauziee, N. A., L. S. Chang, W. A. Wan Mustapha, A. R. Md Nor, and S. J. Lim (2021) Functional polysaccharides of fucoidan, laminaran and alginate from Malaysian brown seaweeds (Sargassum polycystum, Turbinaria ornata and Padina boryana). Int. J. Biol. Macromol. 167: 1135–1145.

    Article  CAS  Google Scholar 

  26. Loureiro, R., C. M. M. Gachon, and C. Rebours (2015) Seaweed cultivation: potential and challenges of crop domestication at an unprecedented pace. New Phytol. 206: 489–492.

    Article  Google Scholar 

  27. Cottier-Cook, E. J., N. Nagabhatla, Y. Badis, M. L. Campbell, T. Chopin, W. Dai, J. Fang, P. He, C. L. Hewitt, G. H. Kim, Y. Huo, Z. Jiang, G. Kema, X. Li, F. Liu, H. Liu, Y. Liu, Q. Lu, Q. Luo, Y. Mao, F. E. Msuya, C. Rebours, H. Shen, G. D. Stentiford, C. Yarish, H. Wu, X. Yang, J. Zhang, Y. Zhou, and C. M. M. Gachon (2016) Safeguarding the Future of the Global Seaweed Aquaculture Industry. UNU-INWEH and SAMS, Hamilton, ON, Canada.

    Google Scholar 

  28. Cai, J., A. Lovatelli, J. Aguilar-Manjarrez, L. Cornish, L. Dabbadie, A. Desrochers, S. Diffey, E. Garrido Gamarro, J. Geehan, A. Hurtado, D. Lucente, G. Mair, W. Miao, P. Potin, C. Przybyla, M. Reantaso, R. Roubach, M. Tauati, and X. Yuan (2021) Seaweeds and Microalgae: An Overview for Unlocking Their Potential in Global Aquaculture Development. FAO, Rome, Italy.

    Google Scholar 

  29. Cai, J., A. Lovatelli, A. Stankus, and X. Zhou (2021) Seaweed revolution: where is the next milestone? FAO Aquac. News 63: 13–16.

    Google Scholar 

  30. Kang, J.-H. and W.-S. Kim (2019) Study on industralization strategy for efficient reuse of seaweed by-products. J. Fish. Bus. Adm. 50: 1–9.

    CAS  Google Scholar 

  31. Gorham, J. and S. A. Lewey (1984) Seasonal changes in the chemical composition of Sargassum muticum. Mar. Biol. 80: 103–107.

    Article  CAS  Google Scholar 

  32. Borines, M. G., R. L. de Leon, and J. L. Cuello (2013) Bioethanol production from the macroalgae Sargassum spp. Bioresour. Technol. 138: 22–29.

    Article  CAS  Google Scholar 

  33. Wang, M., C. Hu, B. B. Barnes, G. Mitchum, B. Lapointe, and J. P. Montoya (2019) The great Atlantic Sargassum belt. Science 365: 83–87.

    Article  CAS  Google Scholar 

  34. Konda, N. V. S. N. M., S. Singh, B. A. Simmons, and D. Klein-Marcuschamer (2015) An investigation on the economic feasibility of macroalgae as a potential feedstock for biorefineries. Bioenergy Res. 8: 1046–1056.

    Article  Google Scholar 

  35. Cesário, M. T., M. M. R. da Fonseca, M. M. Marques, and M. C. M. D. de Almeida (2018) Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnol. Adv. 36: 798–817.

    Article  Google Scholar 

  36. Sasaki, Y. and Y. Yoshikuni (2022) Metabolic engineering for valorization of macroalgae biomass. Metab. Eng. 71: 42–61.

    Article  CAS  Google Scholar 

  37. Schiener, P., M. S. Stanley, K. D. Black, and D. H. Green (2016) Assessment of saccharification and fermentation of brown seaweeds to identify the seasonal effect on bioethanol production. J. Appl. Phycol. 28: 3009–3020.

    Article  CAS  Google Scholar 

  38. Fletcher, H. R., P. Biller, A. B. Ross, and J. M. M. Adams (2017) The seasonal variation of fucoidan within three species of brown macroalgae. Algal Res. 22: 79–86.

    Article  Google Scholar 

  39. Schiener, P., K. D. Black, M. S. Stanley, and D. H. Green (2015) The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 27: 363–373.

    Article  CAS  Google Scholar 

  40. Adams, J. M. M., T. A. Toop, I. S. Donnison, and J. A. Gallagher (2011) Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour. Technol. 102: 9976–9984.

    Article  CAS  Google Scholar 

  41. Iwamoto, K. and Y. Shiraiwa (2005) Salt-regulated mannitol metabolism in algae. Mar. Biotechnol. (N.Y.) 7: 407–415.

    Article  CAS  Google Scholar 

  42. Dai, Y., Q. Meng, W. Mu, and T. Zhang (2017) Recent advances in the applications and biotechnological production of mannitol. J. Funct. Foods 36: 404–409.

    Article  CAS  Google Scholar 

  43. Nabors, L. O. (2001) Alternative Sweeteners. 3rd ed. Marcel Dekker Inc., New York, NY, USA.

    Google Scholar 

  44. Patra, F., S. K. Tomar, and S. Arora (2009) Technological and functional applications of low-calorie sweeteners from lactic acid bacteria. J. Food Sci. 74: R16–R23.

    Article  CAS  Google Scholar 

  45. Saha, B. C. and F. M. Racine (2011) Biotechnological production of mannitol and its applications. Appl. Microbiol. Biotechnol. 89: 879–891.

    Article  CAS  Google Scholar 

  46. Motone, K., T. Takagi, Y. Sasaki, K. Kuroda, and M. Ueda (2016) Direct ethanol fermentation of the algal storage polysaccharide laminarin with an optimized combination of engineered yeasts. J. Biotechnol. 231: 129–135.

    Article  CAS  Google Scholar 

  47. Pang, Z., K. Otaka, T. Maoka, K. Hidaka, S. Ishijima, M. Oda, and M. Ohnishi (2005) Structure of beta-glucan oligomer from laminarin and its effect on human monocytes to inhibit the proliferation of U937 cells. Biosci. Biotechnol. Biochem. 69: 553–558.

    Article  CAS  Google Scholar 

  48. Sova, V. V., M. S. Pesentseva, A. M. Zakharenko, S. N. Kovalchuk, and T. N. Zvyagintseva (2013) Glycosidases of marine organisms. Biochemistry (Mosc.) 78: 746–759.

    Article  CAS  Google Scholar 

  49. Zargarzadeh, M., A. J. R. Amaral, C. A. Custódio, and J. F. Mano (2020) Biomedical applications of laminarin. Carbohydr. Polym. 232: 115774.

    Article  CAS  Google Scholar 

  50. Kadam, S. U., B. K. Tiwari, and C. P. O’Donnell (2015) Extraction, structure and biofunctional activities of laminarin from brown algae. Int. J. Food Sci. Technol. 50: 24–31.

    Article  CAS  Google Scholar 

  51. Chen, J., J. Yang, H. Du, M. Aslam, W. Wang, W. Chen, T. Li, Z. Liu, and X. Liu (2021) Laminarin, a major polysaccharide in stramenopiles. Mar. Drugs 19: 576.

    Article  Google Scholar 

  52. Lomartire, S., J. C. Marques, and A. M. M. Gonçalves (2021) An overview to the health benefits of seaweeds consumption. Mar. Drugs 19: 341.

    Article  CAS  Google Scholar 

  53. Rioux, L.-E., S. L. Turgeon, and M. Beaulieu (2010) Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry 71: 1586–1595.

    Article  CAS  Google Scholar 

  54. Choi, J.-I., H.-J. Kim, J.-H. Kim, and J.-W. Lee (2012) Enhanced biological activities of laminarin degraded by gammaray irradiation. J. Food Biochem. 36: 465–469.

    Article  CAS  Google Scholar 

  55. Fuentes, A.-L., L. Millis, and L. B. Sigola (2011) Laminarin, a soluble beta-glucan, inhibits macrophage phagocytosis of zymosan but has no effect on lipopolysaccharide mediated augmentation of phagocytosis. Int. Immunopharmacol. 11: 1939–1945.

    Article  CAS  Google Scholar 

  56. Ji, C.-F. and Y.-B. Ji (2014) Laminarin-induced apoptosis in human colon cancer LoVo cells. Oncol. Lett. 7: 1728–1732.

    Article  CAS  Google Scholar 

  57. Ji, Y. B., C. F. Ji, and H. Zhang (2012) Laminarin induces apoptosis of human colon cancer LOVO cells through a mitochondrial pathway. Molecules 17: 9947–9960.

    Article  CAS  Google Scholar 

  58. George, M. and T. E. Abraham (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J. Control. Release 114: 1–14.

    Article  CAS  Google Scholar 

  59. Hay, I. D., Z. Ur Rehman, A. Ghafoor, and B. H. A. Rehm (2010) Bacterial biosynthesis of alginates. J. Chem. Technol. Biotechnol. 85: 752–759.

    Article  CAS  Google Scholar 

  60. Lee, K. Y. and D. J. Mooney (2012) Alginate: properties and biomedical applications. Prog. Polym. Sci. 37: 106–126.

    Article  CAS  Google Scholar 

  61. Klöck, G., A. Pfeffermann, C. Ryser, P. Gröhn, B. Kuttler, H. J. Hahn, and U. Zimmermann (1997) Biocompatibility of mannuronic acid-rich alginates. Biomaterials 18: 707–713.

    Article  Google Scholar 

  62. Wee, S. and W. R. Gombotz (1998) Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31: 267–285.

    Article  CAS  Google Scholar 

  63. Tian, J.-Y., X.-Q. Sun, and X.-G. Chen (2008) Formation and oral administration of alginate microspheres loaded with pDNA coding for lymphocystis disease virus (LCDV) to Japanese flounder. Fish Shellfish Immunol. 24: 592–599.

    Article  CAS  Google Scholar 

  64. Thomas, S. (2000) Alginate dressings in surgery and wound management—part 1. J. Wound Care 9: 56–60.

    Article  CAS  Google Scholar 

  65. Kim, E. J., S. Y. Park, J.-Y. Lee, and J. H. Y. Park (2010) Fucoidan present in brown algae induces apoptosis of human colon cancer cells. BMC Gastroenterol. 10: 96.

    Article  Google Scholar 

  66. Li, B., F. Lu, X. Wei, and R. Zhao (2008) Fucoidan: structure and bioactivity. Molecules 13: 1671–1695.

    Article  CAS  Google Scholar 

  67. Bilan, M. I., A. A. Grachev, A. S. Shashkov, N. E. Nifantiev, and A. I. Usov (2006) Structure of a fucoidan from the brown seaweed Fucus serratus L. Carbohydr. Res. 341: 238–245.

    Article  CAS  Google Scholar 

  68. Mitsuya, H., D. J. Looney, S. Kuno, R. Ueno, F. Wong-Staal, and S. Broder (1988) Dextran sulfate suppression of viruses in the HIV family: inhibition of virion binding to CD4+ cells. Science 240: 646–649.

    Article  CAS  Google Scholar 

  69. Cumashi, A., N. A. Ushakova, M. E. Preobrazhenskaya, A. D’Incecco, A. Piccoli, L. Totani, N. Tinari, G. E. Morozevich, A. E. Berman, M. I. Bilan, A. I. Usov, N. E. Ustyuzhanina, A. A. Grachev, C. J. Sanderson, M. Kelly, G. A. Rabinovich, S. Iacobelli, and N. E. Nifantiev (2007) A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology 17: 541–552.

    Article  CAS  Google Scholar 

  70. Hayashi, K., T. Nakano, M. Hashimoto, K. Kanekiyo, and T. Hayashi (2008) Defensive effects of a fucoidan from brown alga Undaria pinnatifida against herpes simplex virus infection. Int. Immunopharmacol. 8: 109–116.

    Article  CAS  Google Scholar 

  71. Hong, S.-B., J.-H. Choi, Y. K. Chang, and S. Mun (2019) Production of high-purity fucose from the seaweed of Undaria pinnatifida through acid-hydrolysis and simulated-moving bed purification. Sep. Purif. Technol. 213: 133–141.

    Article  CAS  Google Scholar 

  72. Wang, D., E. J. Yun, S. Kim, D. H. Kim, N. Seo, H. J. An, J.-H. Kim, N. Y. Cheong, and K. H. Kim (2016) Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae. Bioprocess Biosyst. Eng. 39: 959–966.

    Article  CAS  Google Scholar 

  73. Lugani, Y., R. Rai, A. A. Prabhu, P. Maan, M. Hans, V. Kumar, S. Kumar, A. K. Chandel, and R. S. Sengar (2020) Recent advances in bioethanol production from lignocelluloses: a comprehensive review with a focus on enzyme engineering and designer biocatalysts. Biofuel Res. J. 7: 1267–1295.

    Article  CAS  Google Scholar 

  74. Hafid, H. S., N. A. A. Rahman, U. K. M. Shah, A. S. Baharuddin, and A. B. Ariff (2017) Feasibility of using kitchen waste as future substrate for bioethanol production: a review. Renew. Sustain. Energy Rev. 74: 671–686.

    Article  CAS  Google Scholar 

  75. Vohra, M., J. Manwar, R. Manmode, S. Padgilwar, and S. Patil (2014) Bioethanol production: feedstock and current technologies. J. Environ. Chem. Eng. 2: 573–584.

    Article  CAS  Google Scholar 

  76. Sarkar, N., S. K. Ghosh, S. Bannerjee, and K. Aikat (2012) Bioethanol production from agricultural wastes: an overview. Renew. Energy 37: 19–27.

    Article  CAS  Google Scholar 

  77. Balat, M. (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers. Manag. 52: 858–875.

    Article  CAS  Google Scholar 

  78. Olson, D. G., J. E. McBride, A. J. Shaw, and L. R. Lynd (2012) Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 23: 396–405.

    Article  CAS  Google Scholar 

  79. Limayem, A. and S. C. Ricke (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog. Energy Combust. Sci. 38: 449–467.

    Article  CAS  Google Scholar 

  80. Parisutham, V., T. H. Kim, and S. K. Lee (2014) Feasibilities of consolidated bioprocessing microbes: from pretreatment to biofuel production. Bioresour. Technol. 161: 431–440.

    Article  CAS  Google Scholar 

  81. Xu, Q., A. Singh, and M. E. Himmel (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr. Opin. Biotechnol. 20: 364–371.

    Article  CAS  Google Scholar 

  82. Chujo, M., S. Yoshida, A. Ota, K. Murata, and S. Kawai (2015) Acquisition of the ability to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8. Appl. Environ. Microbiol. 81: 9–16.

    Article  Google Scholar 

  83. Ota, A., S. Kawai, H. Oda, K. Iohara, and K. Murata (2013) Production of ethanol from mannitol by the yeast strain Saccharomyces paradoxus NBRC 0259. J. Biosci. Bioeng. 116: 327–332.

    Article  CAS  Google Scholar 

  84. Yamada, M., A. Yukita, Y. Hanazumi, Y. Yamahata, H. Moriya, M. Miyazaki, T. Yamashita, and H. Shimoi (2018) Poly(3-hydroxybutyrate) production using mannitol as a sole carbon source by Burkholderia sp. AIU M5M02 isolated from a marine environment. Fish. Sci. 84: 405–412.

    Article  CAS  Google Scholar 

  85. Horn, S. J., I. M. Aasen, and K. Ostgaard (2000) Production of ethanol from mannitol by Zymobacter palmae. J. Ind. Microbiol. Biotechnol. 24: 51–57.

    Article  CAS  Google Scholar 

  86. Tajima, T., K. Tomita, H. Miyahara, K. Watanabe, T. Aki, Y. Okamura, Y. Matsumura, Y. Nakashimada, and J. Kato (2018) Efficient conversion of mannitol derived from brown seaweed to fructose for fermentation with a thraustochytrid. J. Biosci. Bioeng. 125: 180–184.

    Article  CAS  Google Scholar 

  87. Kim, G.-Y., Y. H. Seo, I. Kim, and J.-I. Han (2019) Co-production of biodiesel and alginate from Laminaria japonica. Sci. Total Environ. 673: 750–755.

    Article  CAS  Google Scholar 

  88. Görke, B. and J. Stülke (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6: 613–624.

    Article  Google Scholar 

  89. Yin, Y., J. Hu, and J. Wang (2019) Fermentative hydrogen production from macroalgae Laminaria japonica pretreated by microwave irradiation. Int. J. Hydrogen Energy 44: 10398–10406.

    Article  CAS  Google Scholar 

  90. Song, J.-H., J.-R. S. Ventura, C.-H. Lee, and D. Jahng (2011) Butyric acid production from brown algae using Clostridium tyrobutyricum ATCC 25755. Biotechnol. Bioprocess Eng. 16: 42–49.

    Article  CAS  Google Scholar 

  91. Kim, G.-Y., Y. H. Seo, I. Kim, and J.-I. Han (2019) Co-production of biodiesel and alginate from Laminaria japonica. Sci. Total Environ. 673: 750–755.

    Article  CAS  Google Scholar 

  92. Kim, N.-J., H. Li, K. Jung, H. N. Chang, and P. C. Lee (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol. 102: 7466–7469.

    Article  CAS  Google Scholar 

  93. Kostas, E. T., D. A. White, and D. J. Cook (2020) Bioethanol production from UK seaweeds: investigating variable pre-treatment and enzyme hydrolysis parameters. Bioenergy Res. 13: 271–285.

    Article  CAS  Google Scholar 

  94. Sunwoo, I., J. E. Kwon, G.-T. Jeong, and S.-K. Kim (2019) Optimization of hyper-thermal acid hydrolysis and enzymatic saccharification of Ascophyllum nodosum for ethanol production with mannitol-adapted yeasts. Bioprocess Biosyst. Eng. 42: 1255–1262.

    Article  CAS  Google Scholar 

  95. Ra, C. H. and S.-K. Kim (2013) Optimization of pretreatment conditions and use of a two-stage fermentation process for the production of ethanol from seaweed, Saccharina japonica. Biotechnol. Bioprocess Eng. 18: 715–720.

    Article  CAS  Google Scholar 

  96. Fu, H., J. Hu, X. Guo, J. Feng, S.-T. Yang, and J. Wang (2021) Butanol production from Saccharina japonica hydrolysate by engineered Clostridium tyrobutyricum: the effects of pretreatment method and heat shock protein overexpression. Bioresour. Technol. 335: 125290.

    Article  CAS  Google Scholar 

  97. Ra, C. H., I. Y. Sunwoo, T. H. Nguyen, P. Sukwong, P. Sirisuk, G.-T. Jeong, and S.-K. Kim (2019) Butanol and butyric acid production from Saccharina japonica by Clostridium acetobutylicum and Clostridium tyrobutyricum with adaptive evolution. Bioprocess Biosyst. Eng. 42: 583–592. (Erratum published 2019, Bioprocess Biosyst. Eng. 42: 1559)

    Article  CAS  Google Scholar 

  98. Bai, B., J. Zhou, M. Yang, Y. Liu, X. Xu, and J. Xing (2015) Efficient production of succinic acid from macroalgae hydrolysate by metabolically engineered Escherichia coli. Bioresour. Technol. 185: 56–61.

    Article  CAS  Google Scholar 

  99. Alvarado-Morales, M., I. B. Gunnarsson, I. A. Fotidis, E. Vasilakou, G. Lyberatos, and I. Angelidaki (2015) Laminaria digitata as a potential carbon source for succinic acid and bioenergy production in a biorefinery perspective. Algal Res. 9: 126–132.

    Article  Google Scholar 

  100. Marinho, G. S., M. Alvarado-Morales, and I. Angelidaki (2016) Valorization of macroalga Saccharina latissima as novel feedstock for fermentation-based succinic acid production in a biorefinery approach and economic aspects. Algal Res. 16: 102–109.

    Article  Google Scholar 

  101. Mazumdar, S., J. Bang, and M.-K. Oh (2014) L-lactate production from seaweed hydrolysate of Laminaria japonica using metabolically engineered Escherichia coli. Appl. Biochem. Biotechnol. 172: 1938–1952.

    Article  CAS  Google Scholar 

  102. Mazumdar, S., J. Lee, and M.-K. Oh (2013) Microbial production of 2,3 butanediol from seaweed hydrolysate using metabolically engineered Escherichia coli. Bioresour. Technol. 136: 329–336.

    Article  CAS  Google Scholar 

  103. Hakvåg, S., I. Nærdal, T. M. B. Heggeset, K. A. Kristiansen, I. M. Aasen, and T. Brautaset (2020) Production of value-added chemicals by Bacillus methanolicus strains cultivated on mannitol and extracts of seaweed Saccharina latissima at 50°C. Front. Microbiol. 11: 680.

    Article  Google Scholar 

  104. Hoffmann, S. L., M. Kohlstedt, L. Jungmann, M. Hutter, I. Poblete-Castro, J. Becker, and C. Wittmann (2021) Cascaded valorization of brown seaweed to produce l-lysine and value-added products using Corynebacterium glutamicum streamlined by systems metabolic engineering. Metab. Eng. 67: 293–307.

    Article  CAS  Google Scholar 

  105. Azizi, N., G. Najafpour, and H. Younesi (2017) Acid pretreatment and enzymatic saccharification of brown seaweed for polyhydroxybutyrate (PHB) production using Cupriavidus necator. Int. J. Biol. Macromol. 101: 1029–1040.

    Article  CAS  Google Scholar 

  106. Pérez-García, F., V. J. Klein, L. F. Brito, and T. Brautaset (2022) From brown seaweed to a sustainable microbial feedstock for the production of riboflavin. Front. Bioeng. Biotechnol. 10: 863690.

    Article  Google Scholar 

  107. Adams, J. M., J. A. Gallagher, and I. S. Donnison (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J. Appl. Phycol. 21: 569–574.

    Article  CAS  Google Scholar 

  108. Lee, J., P. Li, J. Lee, H. J. Ryu, and K. K. Oh (2013) Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresour. Technol. 127: 119–125.

    Article  CAS  Google Scholar 

  109. Horn, S. J., I. M. Aasen, and K. Østgaard (2000) Ethanol production from seaweed extract. J. Ind. Microbiol. Biotechnol. 25: 249–254.

    Article  CAS  Google Scholar 

  110. Huesemann, M. H., L.-J. Kuo, L. Urquhart, G. A. Gill, and G. Roesijadi (2012) Acetone-butanol fermentation of marine macroalgae. Bioresour. Technol. 108: 305–309.

    Article  CAS  Google Scholar 

  111. Bull, A. T. and C. G. Chesters (1966) The biochemistry of laminarin and the nature of laminarinase. Adv. Enzymol. Relat. Areas Mol. Biol. 28: 325–364.

    CAS  Google Scholar 

  112. Zhu, B. and H. Yin (2015) Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 6: 125–131.

    Article  CAS  Google Scholar 

  113. Wong, T. Y., L. A. Preston, and N. L. Schiller (2000) ALGINATE LYASE: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu. Rev. Microbiol. 54: 289–340.

    Article  CAS  Google Scholar 

  114. Enquist-Newman, M., A. M. E. Faust, D. D. Bravo, C. N. S. Santos, R. M. Raisner, A. Hanel, P. Sarvabhowman, C. Le, D. D. Regitsky, S. R. Cooper, L. Peereboom, A. Clark, Y. Martinez, J. Goldsmith, M. Y. Cho, P. D. Donohoue, L. Luo, B. Lamberson, P. Tamrakar, E. J. Kim, J. L. Villari, A. Gill, S. A. Tripathi, P. Karamchedu, C. J. Paredes, V. Rajgarhia, H. K. Kotlar, R. B. Bailey, D. J. Miller, N. L. Ohler, C. Swimmer, and Y. Yoshikuni (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505: 239–243.

    Article  CAS  Google Scholar 

  115. Hou, X., N. From, I. Angelidaki, W. J. J. Huijgen, and A.-B. Bjerre (2017) Butanol fermentation of the brown seaweed Laminaria digitata by Clostridium beijerinckii DSM-6422. Bioresour. Technol. 238: 16–21.

    Article  CAS  Google Scholar 

  116. Jang, S., Y. Shirai, M. Uchida, and M. Wakisaka (2011) Production of L(+)-lactic acid from mixed acid and alkali hydrolysate of brown seaweed. Food Sci. Technol. Res. 17: 155–160.

    Article  CAS  Google Scholar 

  117. Takeda, H., F. Yoneyama, S. Kawai, W. Hashimoto, and K. Murata (2011) Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ. Sci. 4: 2575–2581.

    Article  CAS  Google Scholar 

  118. Takagi, T., Y. Sasaki, K. Motone, T. Shibata, R. Tanaka, H. Miyake, T. Mori, K. Kuroda, and M. Ueda (2017) Construction of bioengineered yeast platform for direct bioethanol production from alginate and mannitol. Appl. Microbiol. Biotechnol. 101: 6627–6636.

    Article  CAS  Google Scholar 

  119. Santos, C. N. S., D. D. Regitsky, and Y. Yoshikuni (2013) Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Nat. Commun. 4: 2503.

    Article  Google Scholar 

  120. Ji, S.-Q., B. Wang, M. Lu, and F.-L. Li (2016) Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila. Biotechnol. Biofuels 9: 81.

    Article  Google Scholar 

  121. Wargacki, A. J., E. Leonard, M. N. Win, D. D. Regitsky, C. N. S. Santos, P. B. Kim, S. R. Cooper, R. M. Raisner, A. Herman, A. B. Sivitz, A. Lakshmanaswamy, Y. Kashiyama, D. Baker, and Y. Yoshikuni (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335: 308–313.

    Article  CAS  Google Scholar 

  122. Lee, S.-M. and J.-H. Lee (2012) Ethanol fermentation for main sugar components of brown-algae using various yeasts. J. Ind. Eng. Chem. 18: 16–18.

    Article  CAS  Google Scholar 

  123. Sasaki, Y., T. Takagi, K. Motone, T. Shibata, K. Kuroda, and M. Ueda (2018) Direct bioethanol production from brown macroalgae by co-culture of two engineered Saccharomyces cerevisiae strains. Biosci. Biotechnol. Biochem. 82: 1459–1462.

    Article  CAS  Google Scholar 

  124. Dharshini, R. S., A. A. Fathima, S. R. Dharani, and M. Ramya (2020) Utilization of alginate from brown macroalgae for ethanol production by Clostridium phytofermentans. Appl. Biochem. Microbiol. 56: 173–178.

    Article  CAS  Google Scholar 

  125. Lim, H. G., D. H. Kwak, S. Park, S. Woo, J. S. Yang, C. W. Kang, B. Kim, M. H. Noh, S. W. Seo, and G. Y. Jung (2019) Vibrio sp. dhg as a platform for the biorefinery of brown macroalgae. Nat. Commun. 10: 2486.

    Article  Google Scholar 

  126. Kawai, S., K. Ohashi, S. Yoshida, M. Fujii, S. Mikami, N. Sato, and K. Murata (2014) Bacterial pyruvate production from alginate, a promising carbon source from marine brown macroalgae. J. Biosci. Bioeng. 117: 269–274.

    Article  CAS  Google Scholar 

  127. Hu, Z.-Y., S. Wang, Z.-Q. Geng, K. Dai, W.-X. Ji, Y.-C. Tian, W.-T. Li, R. J. Zeng, and F. Zhang (2022) Controlling volatile fatty acids production from waste activated sludge by an alginate-degrading consortium. Sci. Total Environ. 806: 150730.

    Article  CAS  Google Scholar 

  128. Park, S., S. W. Cho, Y. Lee, M. Choi, J. Yang, H. Lee, and S. W. Seo (2021) Engineering Vibrio sp. SP1 for the production of carotenoids directly from brown macroalgae. Comput. Struct. Biotechnol. J. 19: 1531–1540.

    Article  CAS  Google Scholar 

  129. Yamaguchi, T., J. Narsico, T. Kobayashi, A. Inoue, and T. Ojima (2019) Production of poly(3-hydroyxybutylate) by a novel alginolytic bacterium Hydrogenophaga sp. strain UMI-18 using alginate as a sole carbon source. J. Biosci. Bioeng. 128: 203–208.

    Article  CAS  Google Scholar 

  130. Jeong, D. W., J. E. Hyeon, M.-E. Lee, Y. J. Ko, M. Kim, and S. O. Han (2021) Efficient utilization of brown algae for the production of Polyhydroxybutyrate (PHB) by using an enzyme complex immobilized on Ralstonia eutropha. Int. J. Biol. Macromol. 189: 819–825.

    Article  CAS  Google Scholar 

  131. Matsumoto, A., S.-J. Kawai, and M. Yamada (2022) Utilization of various carbon sources for poly(3-hydroxybutyrate) [P(3HB)] production by Cobetia sp. IU180733JP01 (5-11-6-3) which is capable of producing P(3HB) from alginate and waste seaweed. J. Gen. Appl. Microbiol. Advance online publication. https://doi.org/10.2323/jgam.2021.11.002

  132. Fitton, J. H., G. Dell’Acqua, V.-A. Gardiner, S. S. Karpiniec, D. N. Stringer, and E. Davis (2015) Topical benefits of two fucoidanrich extracts from marine macroalgae. Cosmetics 2: 66–81.

    Article  CAS  Google Scholar 

  133. Fitton, J. H. (2011) Therapies from fucoidan; multifunctional marine polymers. Mar. Drugs 9: 1731–1760.

    Article  CAS  Google Scholar 

  134. Ni, Z., Z. Li, J. Wu, Y. Ge, Y. Liao, L. Yuan, X. Chen, and J. Yao (2020) Multi-path optimization for efficient production of 2′-fucosyllactose in an engineered Escherichia coli C41 (DE3) derivative. Front. Bioeng. Biotechnol. 8: 611900.

    Article  Google Scholar 

  135. Chin, Y.-W., N. Seo, J.-H. Kim, and J.-H. Seo (2016) Metabolic engineering of Escherichia coli to produce 2′-fucosyllactose via salvage pathway of guanosine 5′-diphosphate (GDP)-l-fucose. Biotechnol. Bioeng. 113: 2443–2452.

    Article  CAS  Google Scholar 

  136. Yu, S., J.-J. Liu, E. J. Yun, S. Kwak, K. H. Kim, and Y.-S. Jin (2018) Production of a human milk oligosaccharide 2′-fucosyllactose by metabolically engineered Saccharomyces cerevisiae. Microb. Cell Fact. 17: 101.

    Article  Google Scholar 

  137. Jiao, H., X. Song, C. Lai, H. Fang, Y. Song, and J. Zhu (2021) Progress in preparation of cellulase from lignocellulose using fungi. Biotechnol. Bioprocess Eng. 26: 871–886.

    Article  CAS  Google Scholar 

  138. Zhang, G., X. Ren, X. Liang, Y. Wang, D. Feng, Y. Zhang, M. Xian, and H. Zou (2021) Improving the microbial production of amino acids: from conventional approaches to recent trends. Biotechnol. Bioprocess Eng. 26: 708–727.

    Article  CAS  Google Scholar 

  139. Fang, H., C. Li, J. Zhao, and C. Zhao (2021) Biotechnological advances and trends in engineering Trichoderma reesei towards cellulase hyperproducer. Biotechnol. Bioprocess Eng. 26: 517–528.

    Article  CAS  Google Scholar 

  140. Venkatesan, J. and S. Anil (2021) Hydroxyapatite derived from marine resources and their potential biomedical applications. Biotechnol. Bioprocess Eng. 26: 312–324.

    Article  CAS  Google Scholar 

  141. Akermann, A., A. Akermann, J. Weiermüller, S. Lenz, J. Christmann, and R. Ulber (2021) Kinetic model for simultaneous saccharification and fermentation of brewers’ spent grain liquor using Lactobacillus delbrueckii Subsp. lactis. Biotechnol. Bioprocess Eng. 26: 114–1

    Article  CAS  Google Scholar 

  142. Pérez, M. J., E. Falqué, and H. Domínguez (2016) Antimicrobial action of compounds from marine seaweed. Mar. Drugs 14: 52.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (grant number 20220258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyoo Yeol Jung.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, S., Moon, J.H., Sung, J. et al. Recent Advances in the Utilization of Brown Macroalgae as Feedstock for Microbial Biorefinery. Biotechnol Bioproc E 27, 879–889 (2022). https://doi.org/10.1007/s12257-022-0301-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0301-8

Keywords

Navigation