Skip to main content
Log in

The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The seasonal chemical profiling of kelp species has historically either being carried out on only a single species or the data dates back over 60 years. This research highlights a detailed chemical composition profile of the four kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta over a 14-month period. These kelp species were selected due to their identified potential for cultivation. They were chemically characterised to identify seasonal variations and predict best harvest times. Components of interest included the carbohydrates cellulose, laminarin, alginate and mannitol as well as proteins, ash, metals, moisture, polyphenolics, total carbon and nitrogen content. The highest yields of lamianrin and mannitol coincided with the lowest yields in ash, protein, moisture and polyphenols. The implications of these observations for use of kelp species as a fermentation substrate are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams JM, Ross AB, Anastasakis K, Hodgson EM, Gallagher JA, Jones JM, Donnison IS (2011a) Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. Bioresour Technol 102:226–234

    Article  CAS  PubMed  Google Scholar 

  • Adams JM, Toop TA, Donnison IS, Gallagher JA (2011b) Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresour Technol 102:9976–9984

    Article  CAS  PubMed  Google Scholar 

  • Backhus LE, DeRisi J, Brown PO, Bisson LF (2001) Functional genomic analysis of a commercial wine strain of Saccharomyces cerevisiae under differing nitrogen conditions. FEMS Yeast Res 1:111–125

    Article  CAS  PubMed  Google Scholar 

  • Bautista-Gallego J, Arroyo Lopez FN, Durán-Quintana MC, Garrido-Fernández A (2008) Individual effects of sodium, potassium, calcium, and magnesium chloride salts on Lactobacillus pentosus and Saccharomyces cerevisiae growth. J Food Protect 71:1412–1421

    CAS  Google Scholar 

  • Black WAP (1948) The seasonal variation in chemical constitution of some of the sub-littoral seaweeds common to Scotland. Part III. Laminaria saccharina and Saccorhiza bulbosa. J Soc Chem Ind 67:172–176

    Article  Google Scholar 

  • Black WAP (1950a) The seasonal variation in the cellulose content of the common Scottish Laminariaceae and Fucaceae. J Mar Biol Assoc UK 29:379–387

    Article  Google Scholar 

  • Black WAP (1950b) The seasonal variation in weight and chemical composition of the common British Laminariaceae. J Mar Biol Assoc UK 29:45–72

    Article  CAS  Google Scholar 

  • Black WAP, Dewar ET, Woodward FN (1951) Manufacture of algal chemicals. II. Laboratory-scale isolation of mannitol from brown marine algae. J Appl Chem 1:414–424

    Article  CAS  Google Scholar 

  • Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604

    Article  CAS  PubMed  Google Scholar 

  • Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 24:1415–1422

    Article  CAS  PubMed  Google Scholar 

  • Chapman ARO, Craigie JS (1977) Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar Biol 40:197–205

    Article  CAS  Google Scholar 

  • Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899

    Article  CAS  Google Scholar 

  • FAO (2012) The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fleurence J (1999) Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci Technol 10:25–28

    Article  CAS  Google Scholar 

  • Floreto E, Hirata H, Ando S, Yamasaki S (1993) Effects of temperature, light intensity, salinity and source of nitrogen on the growth, total lipid and fatty acid composition of Ulva pertusa Kjellman (Chlorophyta). Bot Mar 36:149–158

    CAS  Google Scholar 

  • Glicksman M (1987) Utilization of seaweed hydrocolloids in the food industry. Hydrobiologia 151/152:31–47

  • González López CV, García MCC, Fernández FGA, Bustos CS, Chisti Y, Sevilla JMF (2010) Protein measurements of microalgal and cyanobacterial biomass. Bioresour Technol 101:7587–7591

    Article  Google Scholar 

  • Grohmann K, Bothast RJ (1994) Pectin-rich residues generated by processing of citrus fruits, apples, and sugar beets. In: Enzymatic conversion of biomass for fuels production, ACS Symp Ser, Am Chem Soc 566:372–390

  • Horn S, Moen E, Østgaard K (1999) Direct determination of alginate content in brown algae by near infra-red (NIR) spectroscopy. J Appl Phycol 11:9–13

    Article  CAS  Google Scholar 

  • Hughes AD, Kelly MS, Black KD, Stanley MS (2012) Biogas from Macroalgae: is it time to revisit the idea? Biotechnol Biofuels 5:86

  • Indergaard M, Minsaas J (1991) Animal and human nutrition. In: Guiry MD, Blunden G (eds) Seaweed resources in Europe: uses and potential. John Wiley & Sons, Chichester, pp 21–64

    Google Scholar 

  • Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F, Saleh A, Underwood SA, Yomano LP, York SW, Zaldivar J, Zhou S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Hori K (1989) Seaweed: chemical composition and potential food uses. Food Rev Int 5:101–144

    Article  CAS  Google Scholar 

  • Kailasapathy K, Sellepan C (1998) Effect of single and integrated emulsifier-stabiliser on soy-ice confection. Food Chem 63:181–186

    Article  CAS  Google Scholar 

  • Kim JK, Kraemer GP, Yarish C (2013) Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra. PLoS ONE 8:e69961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kubanek J, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci 100:6916–6921

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lapointe BE, Ryther JH (1979) The effects of nitrogen and seawater flow rate on growth and biochemical composition of Gracilaria foliifera var. angustissima in mass outdoor cultures. Bot Mar 22:529–537

    Article  CAS  Google Scholar 

  • Lourenço SO, Barbarino E, Marquez UML, Aidar E (1998) Distribution of intracellular nitrogen in marine microalgae: calculation of new nitrogen-to-protein conversion factors. J Phycol 34:798–811

    Article  Google Scholar 

  • Lourenço SO, Barbarino E, De-Paula JC, Pereira LOS, Marquez UML (2002) Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol Res 50:233–241

    Article  Google Scholar 

  • Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465

    Article  Google Scholar 

  • McHugh DJ (2003) A guide to the seaweed industry. FAO Fish Tech Pap 441:1–118

    Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresour Technol 83:37–46

    Article  CAS  PubMed  Google Scholar 

  • Moen E, Horn S, Østgaard K (1997) Biological degradation of Ascophyllum nodosum. J Appl Phycol 9:347–357

    Article  CAS  Google Scholar 

  • Moss B (1952) Variations in chemical composition during the development of Himanthalia elongata (L.) S. F. Gray. J Mar Biol Assoc U K 31:29–34

    Article  CAS  Google Scholar 

  • Murakami K, Yamaguchi Y, Noda K, Fujii T, Shinohara N, Ushirokawa T, Sugawa-Katayama Y, Katayama M (2011) Seasonal variation in the chemical composition of a marine brown alga, Sargassum horneri (Turner) C. Agardh. J Food Compos Anal 24:231–236

    Article  CAS  Google Scholar 

  • Nwosu F, Morris J, Lund VA, Stewart D, Ross HA, McDougall GJ (2011) Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem 126:1006–1012

    Article  CAS  Google Scholar 

  • Papenfus HB, Stirk WA, Finnie JF, Van Staden J (2012) Seasonal variation in the polyamines of Ecklonia maxima. Bot Mar 55:539–546

    Article  CAS  Google Scholar 

  • Phaneuf D, Côté I, Dumas P, Ferron LA, LeBlanc A (1999) Evaluation of the contamination of marine algae (seaweed) from the St. Lawrence River and likely to be consumed by humans. Environ Res 80:S175–S182

    Article  CAS  PubMed  Google Scholar 

  • Querellou J, Børresen T, Boyen C, Dobson A, Höfle M, Ianora A, Jaspars M, Kijjoa A, Olafsen J, Rigos G (2010) Marine biotechnology: a new vision and strategy for Europe: Marine Board-ESF Postition Paper 15. European Science Foundation

  • Ragan MA, Jensen A (1978) Quantitative studies on brown algal phenols. II. Seasonal variation in polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.). J Exp Mar Biol Ecol 34:245–258

    Article  CAS  Google Scholar 

  • Ramus J (1977) Alcian Blue: a quantitative aqueous assay for algal acid and sulfated polysaccharides. J Phycol 13:345–348

    CAS  Google Scholar 

  • Robertson-Andersson DV, Wilson DT, Bolton JJ, Anderson RJ, Maneveldt GW (2009) Rapid assessment of tissue nitrogen in cultivated Gracilaria gracilis (Rhodophyta) and Ulva lactuca (Chlorophyta). Afr J Aquat Sci 34:169–172

    Article  CAS  Google Scholar 

  • Rosell K-G, Srivastava LM (1984) Seasonal variation in the chemical constituents of the brown algae Macrocystis integrifolia and Nereocystis luetkeana. Can J Bot 62:2229–2236

    Article  CAS  Google Scholar 

  • Rosell K-G, Srivastava L (1987) Fatty acids as antimicrobial substances in brown algae. In: Ragan M, Bird C (eds) Twelfth International Seaweed Symposium, vol 41. Developments in Hydrobiology. Springer Netherlands, pp 471–475

  • Ross AB, Jones JM, Kubacki ML, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour Technol 99:6494–6504

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Machado DI, López-Cervantes J, López-Hernández J, Paseiro-Losada P (2004) Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 85:439–444

    Article  Google Scholar 

  • Sanderson J, Cromey C, Dring M, Kelly M (2008) Distribution of nutrients for seaweed cultivation around salmon cages at farm sites in north–west Scotland. Aquaculture 278:60–68

    Article  CAS  Google Scholar 

  • Slocombe SP, Ross M, Thomas N, McNeill S, Stanley MS (2013) A rapid and general method for measurement of protein in micro-algal biomass. Bioresour Technol 129:51–57

    Article  CAS  PubMed  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2005) Determination of ash in biomass. National Renewable Energy Laboratory Report No. TP-510-42622:9

  • Sluiter A, Hames B, Hyman D, Payne D, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J (2008) Determination of total solids in biomass and total dissolved solids in liquid process samples. National Renewable Energy Laboratory (NREL) Technical Report, NREL/TP-510-42621

  • Smale DA, Burrows MT, Moore P, O’Connor N, Hawkins SJ (2013) Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecol Evol 3:4016–4038

    Article  PubMed Central  PubMed  Google Scholar 

  • Tseng CK (1987) Laminaria mariculture in China, FAO Fisheries Technical Paper 281. Food and Agriculture Organisation of the United Nations, Rome

    Google Scholar 

  • Usov AI, Smirnova GP, Klochkova NG (2001) Polysaccharides of algae: 55. Polysaccharide composition of several brown algae from Kamchatka. Russ J Bioorg Chem 27:395–399

    Article  CAS  Google Scholar 

  • Val A, Platas G, Basilio A, Cabello A, Gorrochategui J, Suay I, Vicente F, Portillo E, Río M, Reina G, Peláez F (2001) Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain). Int Microbiol 4:35–40

    Google Scholar 

  • Valderrama D (2012) Social and economic dimensions of seaweed farming: a global review. Paper presented at the Proceedings of the 16th International Institute of Fisheries Economics and Trade (IIFET) Dar es Salaam, Tanzania

  • Van Alstyne KL, McCarthy JJ, Hustead CL, Duggins DO (1999) Geographic variation in polyphenolic levels of Northeastern Pacific kelps and rockweeds. Mar Biol 133:371–379

    Article  Google Scholar 

  • Waterhouse AL (2001) Determination of total phenolics. Current protocols in food analytical chemistry, I111-I118, Wrolstad, RE, Wiley

  • Westermeier R, Murúa P, Patiño D, Muñoz L, Ruiz A, Müller D (2012) Variations of chemical composition and energy content in natural and genetically defined cultivars of Macrocystis from Chile. J Appl Phycol 24:1191–1201

    Article  CAS  Google Scholar 

  • Zemke-White WL, Ohno M (1999) World seaweed utilisation: an end-of-century summary. J Appl Phycol 11:369–376

    Article  Google Scholar 

  • Zhang Q, Zhang J, Shen J, Silva A, Dennis D, Barrow C (2006) A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. J Appl Phycol 18:445–450

    Article  CAS  Google Scholar 

  • Zimmerman RC, Kremer JN (1986) In situ growth and chemical composition of the giant kelp, Macrocystis pyrifera: response to temporal changes in ambient nutrient availability. Mar Ecol Prog Ser 27:277–285

    Article  CAS  Google Scholar 

  • Zuidam NJ, Shimoni E (2010) Overview of microencapsulates for use in food products or processes and methods to make them. In: Encapsulation technologies for active food ingredients and food processing. Springer, Berlin pp 3–29

Download references

Acknowledgments

The authors acknowledge funding for the BioMara project (www.biomara.org) by the European Regional Development Fund through the INTERREG IVA Programme, Highlands and Islands Enterprise, The Crown Estate, Northern Ireland Executive, Scottish Government and Irish Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenneth D. Black or Michele S. Stanley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiener, P., Black, K.D., Stanley, M.S. et al. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta . J Appl Phycol 27, 363–373 (2015). https://doi.org/10.1007/s10811-014-0327-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0327-1

Keywords

Navigation