Skip to main content

Advertisement

Log in

Effective production of fermentable sugars from brown macroalgae biomass

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Brown macroalgae are renewable and sustainable biomass resources for the production of biofuels and chemicals, owing to their high levels of carbohydrates and low levels of lignin. To increase the biological usage of brown macroalgae, it is necessary to depolymerize the polysaccharides that generate macroalgal monomeric sugars or sugar derivatives and to convert them into fermentable sugars for the production of biofuels and chemicals. In this review, we discuss the chemical and enzymatic saccharification of the major carbohydrates found in brown macroalgae and the use of the resulting constituents in the production of biofuels and chemicals, as well as high-value health-benefiting functional oligosaccharides and sugars. We also discuss recently reported experimental results, novel enzymes, and technological breakthroughs that are related to polysaccharide depolymerization, fermentable sugar production, and the biological conversion of non-favorable sugars for fermentation using industrial microorganisms. This review provides a comprehensive perspective of the efficient utilization of brown macroalgae as renewable resources for the production of biofuels and chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aida TM, Yamagata T, Watanabe M, Smith RL (2010) Depolymerization of sodium alginate under hydrothermal conditions. Carbohydr Polym 80:296–232

    Article  CAS  Google Scholar 

  • Ale MT, Meyer AS (2013) Fucoidans from brown seaweeds: an update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Adv 3:8131–8141

    Article  CAS  Google Scholar 

  • Allaway AE, Jennings DH (1970) The influence of cations on glucose transport and metabolism by, and loss of sugar alcohols from, fungus Dendryphiella salina. New Phytol 69:581–593

    Article  CAS  Google Scholar 

  • Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513

    Article  CAS  Google Scholar 

  • Alves A, Sousa RA, Reis RL (2013) A practical perspective on ulvan extracted from green algae. J Appl Phycol 25:407–424

    Article  CAS  Google Scholar 

  • Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  CAS  PubMed  Google Scholar 

  • An C, Kuda T, Yazaki T, Takahashi H, Kimura B (2013) FLX pyrosequencing analysis of the effects of the brown-algal fermentable polysaccharides alginate and laminaran on rat cecal microbiotas. Appl Environ Microbiol 79:860–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andriamanantoanina H, Rinaudo M (2010) Characterization of the alginates from five madagascan brown algae. Carbohydr Polym 82:555–560

    Article  CAS  Google Scholar 

  • Berteau O, McCort I, Goasdoue N, Tissot B, Daniel R (2002) Characterization of a new α-L-fucosidase isolated from the marine mollusk Pecten maximus that catalyzes the hydrolysis of α-L-fucose form algal fucoidan (Ascophyllum nodosum). Glycobiology 12:273–282

    Article  CAS  PubMed  Google Scholar 

  • Besada V, Andrade JM, Schultze F, Gonzalez JJ (2009) Heavy metals in edible seaweeds commercialised for human consumption. J Marine Syst 75:305–313

    Article  Google Scholar 

  • Black WAP (1954) The seasonal variation in the combined l-fucose content of the common British Laminariaceae and Fucaceae. J Sci Food Agric 5:445–448

    Article  CAS  Google Scholar 

  • Chandia NP, Matsuhiro B, Vasquez AE (2001) Alginic acids in Lessonia trabeculata: characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohyd Polym 46:81–87

    Article  CAS  Google Scholar 

  • Chevolot L, Foucault A, Chaubet F, Kervarec N, Sinquin C, Fisher A-M, Boisson-Vidal C (1999) Further data on the structure of brown seaweed fucans: relationships with anticoagulant activity. Carbohydr Res 319:154–165

  • Chujo M, Yoshida S, Ota A, Murata K, Kawai S (2015) Acquisition of the ability to assimilate mannitol by Saccharomyces cerevisiae through dysfunction of the general corepressor Tup1-Cyc8. Appl Environ Microbiol 81:9–16

    Article  PubMed  CAS  Google Scholar 

  • Colin S, Deniaud E, Jam M, Descamps V, Chevolot Y, Kervarec N, Yvin JC, Barbeyron T, Michel G, Kloareg B (2006) Cloning and biochemical characterization of the fucanase FcnA: definition of a novel glycoside hydrolase family specific for sulfated fucans. Glycobiology 16:1021–1032

    Article  CAS  PubMed  Google Scholar 

  • Connell, JJ, Hirst, EL, Percival, EGV (1950) The Constitution of laminarin. Part 1. An investigation on laminarin isolated from Laminaria cloustoni. J Chem Soc 3494–3500

  • Descamps V, Colin S, Lahaye M, Jam M, Richard C, Potin P, Barbeyron T, Yvin JC, Kloareg B (2006) Isolation and culture of a marine bacterium degrading the sulfated fucans from marine brown algae. Mar Biotechnol 8:27–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deville C, Gharbi M, Dandrifosse G, Peulen O (2007) Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J Sci Food Agric 87:1717–1725

    Article  CAS  Google Scholar 

  • Dillon T, Ocolla P (1950) Hydrolysis of laminarin by wheat β-amylase. Nature 166:67

    Article  CAS  PubMed  Google Scholar 

  • Dittami SM, Gravot A, Renault D, Goulitquer S, Eggert A, Bouchereau A, Boyen C, Tonon T (2011) Integrative analysis of metabolite and transcript abundance during the short-term response to saline and oxidative stress in the brown alga Ectocarpus siliculosus. Plant Cell Environ 34:629–642

    Article  CAS  PubMed  Google Scholar 

  • Draget KI, SkjakBraek G, Smidsrod O (1997) Alginate based new materials. Int J Biol Macromol 21:47–55

    Article  CAS  PubMed  Google Scholar 

  • Duarte ME, Cardoso MA, Noseda MD, Cerezo AS (2001) Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydr Res 333:281–293

    Article  CAS  PubMed  Google Scholar 

  • Enquist-Newman M, Faust AM, Bravo DD, Santos CN, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho MY, Donohoue PD, Luo L, Lamberson B, Tamrakar P, Kim EJ, Villari JL, Gill A, Tripathi SA, Karamchedu P, Paredes CJ, Rajgarhia V, Kotlar HK, Bailey RB, Miller DJ, Ohler NL, Swimmer C, Yoshikuni Y (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505:239–243

    Article  CAS  PubMed  Google Scholar 

  • Fedorov SN, Ermakova SP, Zvyagintseva TN, Stonik VA (2013) Anticancer and cancer preventive properties of marine polysaccharides: some results and prospects. Mar Drugs 11:4876–4901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fleming M, Manners DJ, Masson AJ (1967) The enzymic degradation of laminarin. Biochem J 104:32–33

    PubMed Central  Google Scholar 

  • Fogg GE (1996) Algae: an introduction to phycology. Nature 381:660–660

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2012) 2010 Fishery and aquaculture statistics. ftp://ftp.fao.org/FI/CDrom/ CD_yearbook_2010/index.htm. Accessed May 2012

  • Food and Agriculture Organization of the United Nations (2014) The state of world fisheries and aquaculture. http://www.fao.org/3/a-i3720e/index.html. Accessed April 2014

  • Fuchs KP, Zverlov VV, Velikodvorskaya GA, Lottspeich F, Schwarz WH (2003) Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo-β-1,3-glucanase bound to the outer cell surface. Microbiol-Sgm 149:1021–1031

    Article  CAS  Google Scholar 

  • Fujimura T, Shibuya Y, Moriwaki S, Tsukahara K, Kitahara T, Sano T, Nishizawa Y, Takema Y (2000) Fucoidan is the active component of Fucus vesiculosus that promotes contraction of fibroblast-populated collagen gels. Biol Pharm Bull 23:1180–1184

    Article  CAS  PubMed  Google Scholar 

  • Fukuda K, Hiraga M, Asakuma S, Arai I, Sekikawa M, Urashima T (2008) Purification and characterization of a novel exo-β-1,3-1,6-glucanase from the fruiting body of the edible mushroom Enoki (Flammulina velutipes). Biosci Biotechnol Biochem 72:3107–3113

    Article  CAS  PubMed  Google Scholar 

  • Furukawa S, Fujikawa T, Koga D, Ide A (1992a) Production of fucoidan-degrading enzymes, fucoidanase, and fucoidan sulfatase by Vibrio sp. N-5. Nippon Suisan Gakk 58:1499–1503

    Article  CAS  Google Scholar 

  • Furukawa S, Fujikawa T, Koga D, Ide A (1992b) Purification and some properties of exo-type fucoidanases from Vibrio sp. N-5. Biosci Biotechnol Biochem 56:1829–1834

    Article  CAS  Google Scholar 

  • Gacesa P (1988) Alginates. Carbohydr Polym 8:161–182

    Article  CAS  Google Scholar 

  • Gibson SR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  • Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G (2006) Bio-ethanol–the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  CAS  PubMed  Google Scholar 

  • Han WJ, JY G, Cheng YY, Liu HH, Li YZ, Li FC (2016) Novel alginate lyase (Aly5) from a polysaccharide-degrading marine bacterium, Flammeovirga sp strain MY04: effects of module truncation on biochemical characteristics, alginate degradation patterns, and oligosaccharide-yielding properties. Appl Environ Microbiol 82:364–374

    Article  CAS  Google Scholar 

  • Hartl L, Gastebois A, Aimanianda V, Latge JP (2011) Characterization of the GPI-anchored endo β-1,3-glucanase Eng2 of Aspergillus fumigatus. Fungal Genet Biol 48:185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haug A, Larsen B, Smidsrod O (1966) A study of constitution of alginic acid by partial acid hydrolysis. Acta Chem Scand 20:183–190

    Article  CAS  Google Scholar 

  • Holtkamp AD, Kelly S, Ulber R, Lang S (2009) Fucoidans and fucoidanases-focus on techniques for molecular structure elucidation and modification of marine polysaccharides. Appl Microbiol Biotechnol 82:1–11

    Article  CAS  PubMed  Google Scholar 

  • Horn SJ, Aasen IM, Ostgaard K (2000) Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol 24:51–57

    Article  CAS  Google Scholar 

  • Ivanova EP, Bakunina IY, Sawabe T, Hayashi K, Alexeeva YV, Zhukova NV, Nicolau DV, Zvaygintseva TN, Mikhailov VV (2002) Two species of culturable bacteria associated with degradation of brown algae Fucus evanescens. Microbial. Ecol 43:242–249

    CAS  Google Scholar 

  • Jang JS, Cho YK, Jeong GT, Kim SK (2012) Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst Eng 35:11–18

    Article  CAS  PubMed  Google Scholar 

  • John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  PubMed  Google Scholar 

  • Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638

    Article  CAS  Google Scholar 

  • Jung KW, Kim DH, Shin HS (2011) Fermentative hydrogen production from Laminaria japonica and optimization of thermal pretreatment conditions. Bioresour Technol 102:2745–2750

    Article  CAS  PubMed  Google Scholar 

  • Jung KA, Lim SR, Kim Y, Park JM (2013a) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190

    Article  CAS  PubMed  Google Scholar 

  • Jung YH, Kim IJ, Kim HK, Kim KH (2013b) Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresour Technol 132:109–114

    Article  CAS  PubMed  Google Scholar 

  • Kadam SU, Tiwari BK, O'Donnell CP (2015) Extraction, structure and biofunctional activities of laminarin from brown algae. Int J Food Sci Technol 50:24–31

    Article  CAS  Google Scholar 

  • Karsten U, West JA, Mostaert AS, King RJ, Barrow KD, Kirst GO (1992) Mannitol in the red algal genus Caloglossa (Harvey) J. Agardh. J Plant Physiol 140:292–297

    Article  CAS  Google Scholar 

  • Kim KH, Kim YW, Kim HB, Lee BJ, Lee DS (2006) Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica. Biotechnol Lett 28:439–446

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Lee CG, Lee EY (2011a) Alginate lyase: structure, property, and application. Biotechnol Bioprocess Eng 16:843–851

    Article  CAS  Google Scholar 

  • Kim NJ, Li H, Jung K, Chang HN, Lee PC (2011b) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102:7466–7469

    Article  CAS  PubMed  Google Scholar 

  • Kim HT, Chung JH, Wang D, Lee J, Woo HC, Choi IG, Kim KH (2012a) Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40. Appl Microbiol Biotechnol 93:2233–2239

  • Kim HT, Ko HJ, Kim N, Kim D, Lee D, Choi IG, Woo HC, Kim MD, Kim KH (2012b) Characterization of a recombinant endo-type alginate lyase (Alg7D) from Saccharophagus degradans. Biotechnol Lett 34:1087–1092

    Article  CAS  PubMed  Google Scholar 

  • Kim HT, Lee S, Kim KH, Choi IG (2012c) The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresour Technol 107:301–306

  • Kim H, Ra CH, Kim SK (2013a) Ethanol production from seaweed (Undaria pinnatifida) using yeast acclimated to specific sugars. Biotechnol Bioprocess Eng 18:533–537

    Article  CAS  Google Scholar 

  • Kim HT, Yun EJ, Wang D, Chung JH, Choi I-G, Kim KH (2013b) High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass. Bioresour Technol 136:582–587

  • Labourel A, Jam M, Jeudy A, Hehemann JH, Czjzek M, Michel G (2014) The β-glucanase ZgLamA from Zobellia galactanivorans evolved a bent active site adapted for efficient degradation of algal laminarin. J Biol Chem 289:2027–2042

    Article  CAS  PubMed  Google Scholar 

  • Lafond M, Navarro D, Haon M, Couturier M, Berrin J-G (2012) Characterization of a broad-specificity β-glucanase acting on β-(1,3)-, β-(1,4)-, and β-(1,6)-glucans that defines a new glycoside hydrolase family. Appl Environ Microbiol 78:8540–8546

  • Lee H, Schneider H (1987) Ethanol-production from xylitol and some other polyols by Pichia angophorae. Biotechnol Lett 9:581–584

    Article  CAS  Google Scholar 

  • Lee J-B, Hayashi K, Maeda M, Hayashi T (2004) Antiherpetic activities of sulfated polysaccharides from green algae. Planta Med 70:813–817

    Article  CAS  PubMed  Google Scholar 

  • Lee JB, Takeshita A, Hayashi K, Hayashi T (2011) Structures and antiviral activities of polysaccharides from Sargassum trichophyllum. Carbohydr Polym 86:995–999

  • Lee CH, Yun EJ, Kim HT, Choi I-G, Kim KH (2015) Saccharification of agar using hydrothermal pretreatment and enzymes supplemented with agarolytic β-galactosidase. Process Biochem 50:1629–1633

  • Li B, Lu F, Wei X, Zhao R (2008) Fucoidan: structure and bioactivity. Molecules 13:1671–1695

    Article  CAS  PubMed  Google Scholar 

  • Li SY, Wang LN, Han F, Gong QH, Yu WG (2016) Cloning and characterization of the first polysaccharide lyase family 6 oligoalginate lyase from marine Shewanella sp. Kz7. J Biochem 159:77–86

    Article  CAS  PubMed  Google Scholar 

  • Listinsky JJ, Siegal GP, Listinsky CM (2011) The emerging importance of α-L-fucose in human breast cancer: a review. Am J Transl Res 3:292–322

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mabeau S, Kloareg B, Joseleau J-P (1990) Fractionation and analysis of fucans from brown-algae. Phytochemistry 29:2441–2445

  • Malihan LB, Nisola GM, Chung WJ (2012) Brown algae hydrolysis in 1-n-butyl-3-methylimidazolium chloride with mineral acid catalyst system. Bioresour Technol 118:545–552

  • Marinho-Soriano E, Fonseca PC, Carneiro MA, Moreira WS (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97(18):2402–2406

    Article  CAS  PubMed  Google Scholar 

  • Marsham S, Scott GW, Tobin ML (2007) Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem 100:1331–1336

    Article  CAS  Google Scholar 

  • Matsubara Y, Kawada R, Iwasaki K, Oda T, Muramatsu T (1998) Extracellular poly (α-l-guluronate) lyase from Corynebacterium sp.: purification, characteristics, and conformational properties. J Protein Chem 17:29–36

    Article  CAS  PubMed  Google Scholar 

  • Miyake O, Hashimoto W, Murata K (2003) An exotype alginate lyase in Sphingomonas sp Al: overexpression in Escherichia coli, purification, and characterization of alginate lyase IV (A1-IV). Protein Expr Purif 29:33–41

  • Moen E, Larsen B, Ostgaard K, Jensen A (1999) Alginate stability during high salt preservation of Ascophyllum nodosum. J Appl Phycol 11:21–25

    Article  CAS  Google Scholar 

  • Mrsa V, Klebl F, Tanner W (1993) Purification and characterization of the Saccharomyces cerevisiae Bgl2 gene-product, a cell wall endo-β-1,3-glucanase. J Bacteriol 175:2102–2106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neyrinck AM, Mouson A, Delzenne NM (2007) Dietary supplementation with laminarin, a fermentable marine β (1-3) glucan, protects against hepatotoxicity induced by LPS in rat by modulating immune response in the hepatic tissue. Int Immunopharmacol 7:1497–1506

    Article  CAS  PubMed  Google Scholar 

  • Niemela K, Sjostrom E (1985) Alkaline degradation of alginates to carboxylic acids. Carbohydr Res 144:241–249

    Article  CAS  Google Scholar 

  • Nishino T, Nishioka C, Ura H, Nagumo T (1994a) Isolation and partial characterization of a novel amino sugar containing fucan sulfate from commercial Fucus vesiculosus fucoidan. Carbohydr Res 255:213–224

    Article  CAS  PubMed  Google Scholar 

  • Nishino T, Takabe Y, Nagumo T (1994b) Isolation and partial characterization of a novel β-d-galactan sulfate from the brown seaweed Laminaria angustata var. longissima. Carbohydr Polym 23:165–173

  • O’ Neill AN (1954) Degradative studies on fucoidin. J Am Chem Soc 76:5074–5076

    Article  Google Scholar 

  • Ortiz J, Romero N, Robert P, Araya J, Lopez-Hernandez J, Bozzo C, Navarrete E, Osorio A, Rios A (2006) Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem 99:98–104

    Article  CAS  Google Scholar 

  • Ota A, Kawai S, Oda H, Iohara K, Murata K (2013) Production of ethanol from mannitol by the yeast strain Saccharomyces paradoxus NBRC 0259. J Biosci Bioeng 116:327–332

    Article  CAS  PubMed  Google Scholar 

  • Patankar MS, Oehninger S, Barnett T, Williams RL, Clark GF (1993) A revised structure for fucoidan may explain some of its biological activities. J Biol Chem 268:21770–21776

    CAS  PubMed  Google Scholar 

  • Pawar SN, Edgar KJ (2013) Alginate esters via chemoselective carboxyl group modification. Carbohydr Polym 98:1288–1296

    Article  CAS  PubMed  Google Scholar 

  • Peat S, Whelan WJ, Lawley HG (1958) The structure of laminarin. Part I. The main polymeric linkage. J Chem Soc:724–728

  • Peng Y, Liu G-L,Yu X-J, Wang X-H, Jing L, Chi Z-M (2011) Cloning of exo-β-1,3-glucanase gene from a marine yeast Williopsis saturnus and its overexpression in Yarrowia lipolytica. Mar Biotechnol 13:193–204

  • Percival EGV, Ross AG (1951) The constitution of laminarin. Part II. The soluble laminarin of Laminaria digitata. J Chem Soc:720–726

  • Pham TN, Nam WJ, Jeon YJ, Yoon HH (2012) Volatile fatty acids production from marine macroalgae by anaerobic fermentation. Bioresour Technol 124:500–503

    Article  CAS  PubMed  Google Scholar 

  • Preiss J, Ashwell G (1962a) Alginic acid metabolism in bacteria. I. Enzymatic formation of unsaturated oligosaccharides and 4-deoxy-l-erythro-5-hexoseulose uronic acid. J Biol Chem 237:309–316

    CAS  PubMed  Google Scholar 

  • Preiss J, Ashwell G (1962b) Alginic acid metabolism in bacteria. II. Enzymatic reduction of 4-deoxy-l-erythro-5-hexoseulose uronic acid to 2-keto-3-deoxy-d-gluconic acid. J Biol Chem 237:317–321

    CAS  PubMed  Google Scholar 

  • Qu GY, Liu X, Wang D, Yuan Y, Han LJ (2014) Isolation and characterization of fucoidans from five brown algae and evaluation of their antioxidant activity. J Ocean Univ 13:851–856

    Article  CAS  Google Scholar 

  • Reed RH, Davison IR, Chudek JA, Foster R (1985) The osmotic role of mannitol in the Phaeophyta: an appraisal. Phycologia 24:35–47

    Article  Google Scholar 

  • Rercival V, McDowell RH (1968) Chemistry and enzymology of marine algal polysaccharides. Angew Chem 80:856

    Google Scholar 

  • Rios G, Ferrando A, Serrano R (1997) Mechanisms of salt tolerance conferred by overexpression of the HAL1 gene in Saccharomyces cerevisiae. Yeast 13:515–528

    Article  CAS  PubMed  Google Scholar 

  • Rioux L-E, Turgeon SL, Beaulieu M (2010) Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry 71:1586–1595

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues D, Freitas AC, Pereira L, Rocha-Santos TA, Vasconcelos MW, Roriz M, Rodriguez-Alcala LM, Gomes AM, Duarte AC (2015) Chemical composition of red, brown and green macroalgae from Buarcos bay in central west coast of Portugal. Food Chem 183:197–207

    Article  CAS  PubMed  Google Scholar 

  • Roesijadi G, Jones SB, Snowden-Swan LJ, Zhu Y (2010) Macroalgae as a biomass feedstock: a preliminary analysis. US Department of Energy under contract DE-AC05-76RL01830, PNNL-19944. Pacific Northwest National Laboratory, Richland

    Book  Google Scholar 

  • Ryu M, Lee EY (2011) Saccharification of alginate by using exolytic oligoalginate lyase from marine bacterium Sphingomonas sp MJ-3. J Ind Eng Chem 17:853–858

    Article  CAS  Google Scholar 

  • Sakai T, Kawai T, Kato I (2004) Isolation and characterization of a fucoidan-degrading marine bacterial strain and its fucoidanase. Mar Biotechnol 6:335–346

    Article  CAS  PubMed  Google Scholar 

  • Sawabe T, Takahashi H, Ezura Y, Gacesa P (2001) Cloning, sequence analysis and expression of Pseudoalteromonas elyakovii IAM 14594 gene (alyPEEC) encoding the extracellular alginate lyase. Carbohydr Res 335:11–21

    Article  CAS  PubMed  Google Scholar 

  • Shin HJ, Oh SJ, Kim SI, Kim HW, Son JH (2009) Conformational characteristics of β-glucan in laminarin probed by terahertz spectroscopy. Appl Phys Lett 94:111911

    Article  CAS  Google Scholar 

  • Siddhanta AK, Murthy ASK (2001) Bioactive polysaccharides from marine brown algae (Phaeophyceae). J Indian Chem Soc 78:431–437

    CAS  Google Scholar 

  • Silchenko AS, Kusaykin MI, Zakharenko AM, Menshova RV, Khanh HHN, Dmitrenok PS, Isakov VV, Zvyagintseva TN (2014) Endo-1,4-fucoidanase from Vietnamese marine mollusk Lambis sp. which producing sulphated fucooligosaccharides. J Mol Catal B-Enzym 102:154–160

    Article  CAS  Google Scholar 

  • Song MY, Pham HD, Seon J, Woo HC (2015) Marine brown algae: a conundrum answer for sustainable biofuels production. Renew Sust Energ Rev 50:782–792

    Article  CAS  Google Scholar 

  • Sova VV, Elyakova LA, Vaskovsk VE (1970) The distribution of laminarinases in marine invertebrates. Comp Biochem Physiol 32:459–464

    Article  CAS  Google Scholar 

  • Spoehr HA (1947) The hydrolysis of alginic acid with formic acid. Arch Biochem 14:153–155

    CAS  PubMed  Google Scholar 

  • Stark JR (1976) New method for analysis of laminarins and for preparative-scale fractionation of their components. Carbohydr Res 47:176–178

    Article  CAS  PubMed  Google Scholar 

  • Stoop JM, Williamson JD, Pharr DM (1996) Mannitol metabolism in plants: a method for coping with stress. Trends Plant Sci 1:139–144

    Article  Google Scholar 

  • Sun Z, He Y, Liang Z, Zhou W, Niu T (2009) Sulfation of (1 → 3)-β-D-glucan from the fruiting bodies of Russula virescens and antitumor activities of the modifiers. Carbohydr Polym 77:628–633

    Article  CAS  Google Scholar 

  • Wu S, Sun J, Chi S, Wang L, Wang X, Liu C, Li X, Yin J, Liu T, Yu J (2014) Transcriptome sequencing of essential marine brown and red algal species in China and its significance in algal biology and phylogeny. Acta Oceanol Sin 33:1–12

  • Szejtli J (1965) Acid hydrolysis of laminarin. Model Chem 45:141–151

    CAS  Google Scholar 

  • Takagi T, Yokoi T, Shibata T, Morisaka H, Kuroda K, Ueda M (2015) Engineered yeast whole-cell biocatalyst for direct degradation of alginate from macroalgae and production of non-commercialized useful monosaccharide from alginate. Appl Microbiol Biotechnol 100:1723–1732

    Article  CAS  Google Scholar 

  • Takagi T, Morisaka H, Aburaya S, Tatsukami Y, Kuroda K, Ueda M (2016) Putative alginate assimilation process of the marine bacterium Saccharophagus degradans 2-40 based on quantitative proteomic analysis. Mar Biotechnol (NY) 18:15–23

    Article  CAS  Google Scholar 

  • Takase R, Ochiai A, Mikami B, Hashimoto W, Murata K (2010) Molecular identification of unsaturated uronate reductase prerequisite for alginate metabolism in Sphingomonas sp. A1. Biochimica Biophys Acta 1804:1925–1936

    Article  CAS  Google Scholar 

  • Takeda H, Yoneyama F, Kawai S, Hashimoto W, Murata K (2011) Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energ Environ Sci 4:2575–2581

    Article  CAS  Google Scholar 

  • Tesson B, Charrier C (2014) Brown algal morphogenesis: atomic force microscopy as a tool to study the role of mechanical forces. Front Plant Sci 5

  • Tsai P-W, Yang C-Y, Chang H-T, Lan C-Y (2011) Characterizing the role of cell-wall β-1,3-exoglucanase Xog1p in Candida albicans adhesion by the human antimicrobial peptide LL-37. PLoS One 6:e21394

  • Usov AI, Bilan MI (2009) Fucoidans–sulfated polysaccharides of brown algae. Russ Chem Rev 78:785–799

    Article  CAS  Google Scholar 

  • van der Woude MW, Henderson IR (2008) Regulation and function of Ag43 (flu). Annu Rev Microbiol 62:153–169

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Zhang Q, Zhang Z, Zhang H, Niu X (2010) Structural studies on a novel fucogalactan sulfate extracted from the brown seaweed Laminaria japonica. Int J Biol Macromol 47:126–131

    Article  CAS  PubMed  Google Scholar 

  • Wang DM, Kim HT, Yun EJ, Kim DH, Park YC, Woo HC, Kim KH (2014) Optimal production of 4-deoxy-l-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases. Bioprocess Biosyst Eng 37:2105–2111

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Kim DH, Yun EJ, Park YC, Seo JH, Kim KH (2016a) The first bacterial β-1,6-endoglucanase from Saccharophagus degradans 2-40T for the hydrolysis of pustulan and laminarin. Appl Microbiol Biotechnol. doi:10.1007/s00253-016-7753-8

  • Wang D, Kim DH, Seo N, Yun EJ, An HJ, Kim JH, Kim KH (2016b) A novel glycoside hydrolase family 5 β-1,3-1,6-endoglucanase from Saccharophagus degradans 2-40T and its transglycosylase activity. Appl Environ Microbiol 82:4340–4349

    Article  PubMed  Google Scholar 

  • Wang D, Yun EJ, Kim S, Kim DH, Seo N, An HJ, Kim JH, Cheong NY, Kim KH (2016c) Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae. Bioprocess Biosyst Eng 39:959–566

    Article  CAS  PubMed  Google Scholar 

  • Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CN, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313

    Article  CAS  PubMed  Google Scholar 

  • Wei N, Quarterman J, Jin Y-S (2013) Marine macroalgae: an untapped resource for producing fuels and chemicals. Trends Biotechnol 31:70–77

    Article  CAS  PubMed  Google Scholar 

  • Weiner RM, Taylor LE, Henrissat B, Hauser L, Land M, Coutinho PM, Rancurel C, Saunders EH, Longmire AG, Zhang H, Bayer EA, Gilbert HJ, Larimer F, Zhulin IB, Ekborg NA, Lamed R, Richardson PM, Borovok I, Hutcheson S (2008) Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40T. PLoS Genet 4:e1000087

  • Whistler RL, Bemiller JN (1960) Alkaline degradation of alginates. J Am Chem Soc 82:457–459

    Article  Google Scholar 

  • Wisselink HW, Weusthuis RA, Eggink G, Hugenholtz J, Grobben GJ (2002) Mannitol production by lactic acid bacteria: a review. Int Dairy J 12:151–161

    Article  CAS  Google Scholar 

  • Woo JB, Kang HN, Woo EJ, Lee SB (2014) Molecular cloning and functional characterization of an endo-beta-1,3-glucanase from Streptomyces matensis ATCC 23935. Food Chem 148:184–187

    Article  CAS  PubMed  Google Scholar 

  • Xue CH, Fang Y, Lin H, Chen L, Li Z-J, Deng D, Lu C-X (2001) Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica. J Appl Phycol 13:67–70

  • Yanagisawa M, Kawai S, Murata K (2013) Strategies for the production of high concentrations of bioethanol from seaweeds production of high concentrations of bioethanol from seaweeds. Bioengineered 4:224–235

    Article  PubMed  PubMed Central  Google Scholar 

  • Yun EJ, Shin MH, Yoon JJ, Kim YJ, Choi I-G, Kim KH (2011) Production of 3,6-anhydro-l-galactose from agarose by agarolytic enzymes of Saccharophagus degradans 2-40. Process Biochem 46:88–93

  • Yun EJ, Lee S, Kim JH, Kim BB, Kim HT, Lee SH, Pelton JG, Kang NJ, Choi I-G, Kim KH (2013) Enzymatic production of 3,6-anhydro galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl Microbiol Biotechnol 97:2961–2970

  • Yun EJ, Lee S, Kim HT, Pelton JG, Kim S, Ko HJ, Choi IG, Kim KH (2015) The novel catabolic pathway of 3,6-anhydro-l-galactose, the main component of red macroalgae, in a marine bacterium. Environ Microbiol 17:1677–1688

    Article  CAS  PubMed  Google Scholar 

  • Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Choi I-G, Kim KH (2016) Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour Technol 199:311–318

  • Zamora MGM, Bournonville CG, Castagnaro AP, Ricci JC (2012) Identification and characterisation of a novel class I endo-β-1,3-glucanase regulated by salicylic acid, ethylene and fungal pathogens in strawberry. Funct Plant Biol 39:412–420

  • Zhu B, Yin H (2015) Alginate lyase: review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 6:125–131

Download references

Acknowledgments

This work was supported by a grant from the Ministry of Trade, Industry & Energy (10052721). This study was performed at the Korea University Food Safety Hall for the Institute of Biomedical Science and Food Safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Heon Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Kim, D.H. & Kim, K.H. Effective production of fermentable sugars from brown macroalgae biomass. Appl Microbiol Biotechnol 100, 9439–9450 (2016). https://doi.org/10.1007/s00253-016-7857-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7857-1

Keywords

Navigation