Skip to main content
Log in

Progress in Preparation of Cellulase from Lignocellulose Using Fungi

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass such as agricultural and forestry waste is the most abundant renewable organic carbon source on earth and can be used to produce source of clean energy such as ethanol. One of the disadvantages of the preparation of ethanol using lignocellulose as raw material is the high cost of production of cellulase. Fungi are capable of effectively degrading lignocellulose and secreting a large amount of cellulase, and have the advantages of ease of preparation, high yield, and full enzyme systems. Therefore, this paper reviews sources of lignocellulose and the biodegradation properties which limit the production of cellulase, proposes micro-organisms capable of degrading lignocellulose and explains the types of cellulase, and the mechanism of action, methods of fermentation optimization, and control are analyzed, and ways to increase the yield of cellulase are described. Finally, research on the effects of inducers on the production of cellulase by fungi is reviewed. The aims of this review are to provide a reference for the efficient production and industrial application of cellulase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hengzhe, W., W. Yue, F. Yuelei, and M. Kaiyun (2018) Cellulase production technology and market analysis. Biotechnol. Bus. 66: 6–11.

    Google Scholar 

  2. Singh nee’ Nigam, P. (2009) Production of organic acids from agro-industrial residues. pp. 37–60. In: P. Singhnee’Nigam and A. Pandey (eds.). Biotechnology for Agro-Industrial Residues Utilisation. Springer, Dordrecht, Netherlands.

    Chapter  Google Scholar 

  3. Xu, F., Y. Shen, J. Zhao, X. Bao, and Y. Qu (2010) Status and prospect of lignocellulosic bioethanol production in China. Bioresour. Technol. 101: 4814–4819.

    Article  Google Scholar 

  4. Singhania, R. R., A. K. Patel, A. Pandey, and E. Ganansounou (2017) Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application. Bioresour. Technol. 241: 1352–1361.

    Article  Google Scholar 

  5. Gao, J., Y. Qian, Y. Wang, Y. Qu, and Y. Zhong (2017) Production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of Trichoderma reesei. Biotechnol. Biofuels. 10: 272.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fujii, T., H. Inoue, and K. Ishikawa (2013) Enhancing cellulase and hemicellulase production by genetic modification of the carbon catabolite repressor gene, creA, in Acremonium cellulolyticus. AMB Expr. 3: 73.

    Article  Google Scholar 

  7. Harkki, A., A. Mäntylä, M. Penttilä, S. Muttilainen, R. Bühler, P. Suominen, J. Knowles, and H. Nevalainen (1991) Genetic engineering of Trichoderma to produce strains with novel cellulase profiles. Enzyme Microb. Technol. 13: 227–233.

    Article  CAS  PubMed  Google Scholar 

  8. Lubieniechi, S., T. Peranantham, and D. B. Levin (2013) Recent patents on genetic modification of plants and microbes for biomass conversion to biofuels. Recent Pat. DNA Gene Seq. 7: 25–35.

    Article  CAS  PubMed  Google Scholar 

  9. Fang, X., S. Yano, H. Inoue, and S. Sawayama (2009) Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J. Biosci. Bioeng. 107: 256–261.

    Article  CAS  PubMed  Google Scholar 

  10. Nour, M. S., M. N. A. Wahab, A. Ariff, R. Mohamad, and S. Mustafa (2010) Optimization of cellulase production by Aspergillus terreus under submerged fermentation using response surface methodology. Aust. J. Basic Appl. Sci. 4: 6106–6124.

    CAS  Google Scholar 

  11. Wang, X. J., J. G. Bai, and Y. X. Liang (2006) Optimization of multienzyme production by two mixed strains in solid-state fermentation. Appl. Microbiol. Biotechnol. 73: 533–540.

    Article  CAS  PubMed  Google Scholar 

  12. Anuradha, J. S. and C. Vallinachiyar (2011) Optimization of cellulase production by Aspergillus nidulans: application in the biosoftening of cotton fibers. World J. Microbiol. Biotechnol. 27: 85–97.

    Article  Google Scholar 

  13. Yan, Z. L., X. Cao, Q. Liu, Z. Yang, Y. Teng, and J. Zhao (2012) A shortcut to the optimization of cellulase production using the mutant Trichoderma reesei YC-108. Indian J. Microbiol. 52: 670–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shah, S. P., K. S. Kalia, and J. S. Patel (2015) Optimization of cellulase production by Penicillium oxalicum using banana agrowaste as a substrate. J. Gen. Appl. Microbiol. 61: 35–43.

    Article  CAS  PubMed  Google Scholar 

  15. Singhania, R. R., R. K. Sukumaran, and A. Pandey (2007) Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Appl. Biochem. Biotechnol. 142: 60–70.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, S., Y. Chen, J. Dong, and Q. Liang (2012) Solid State Fermentation(SSF) of orange peels for production of cellulase and amylase by Aspergillus niger. Food Sci. 33: 190–193.

    Google Scholar 

  17. Liu, D., R. Zhang, X. Yang, H. Wu, D. Xu, Z. Tang, and Q. Shen (2011) Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int. Biodeterior. Biodegradation. 65: 717–725.

    Article  CAS  Google Scholar 

  18. Hendy, N. A., C. R. Wilke, and H. W. Blanch (1984) Enhanced cellulase production in fed-batch culture of Trichoderma reesei C30. Enzyme Microb. Technol. 6: 73–77.

    Article  CAS  Google Scholar 

  19. Mohagheghi, A., K. Grohmann, and C. E. Wyman (1990) Production of cellulase on mixtures of xylose and cellulose in a fed-batch process. Biotechnol. Bioeng. 35: 211–216.

    Article  CAS  PubMed  Google Scholar 

  20. Uday, U. S. P., T. K. Bandyopadhyay, S. Goswami, and B. Bhunia (2017) Optimization of physical and morphological regime for improved cellulase free xylanase production by fed batch fermentation using Aspergillus niger (KP874102.1) and its application in bio-bleaching. Bioengineered. 8: 137–146.

    Article  Google Scholar 

  21. Burapatana, V., A. Prokop, and R. D. Tanner (2005) Enhancing cellulase foam fractionation with addition of surfactant. Appl. Biochem. Biotechnol. 121–124: 541–552.

    Article  PubMed  Google Scholar 

  22. El Baz, A. F., Y. M. H. Shetaia, H. A. S. Eldin, and A. ElMekawy (2018) Optimization of cellulase production by Trichoderma viride using response surface methodology. Curr. Biotechnol. 7: 19–25.

    Article  CAS  Google Scholar 

  23. Guo, J., J. Xi, J. Song, and B. Deng (2015) Optimization of cellulase production from Trichoderma harzianum TC10-13. Nanfang Nongye Xuebao. 46: 79–84.

    CAS  Google Scholar 

  24. Kuhad, R. C., M. Kumar, and A. Singh (1994) A hypercellulolytic mutant of Fusarium oxysporum. Lett. Appl. Microbiol. 19: 397–400.

    Article  CAS  PubMed  Google Scholar 

  25. Shewale, J. G. and J. C. Sadana (1978) Cellulase and β-glucosidase production by a basidiomycete species. Can. J. Microbiol. 24: 1204–1216.

    Article  CAS  PubMed  Google Scholar 

  26. Ahuja, S. K., G. M. Ferreira, and A. R. Moreira (2004) Production of an endoglucanase by the shipworm bacterium, Teredinobacter turnirae. J. Ind. Microbiol. Biotechnol. 31: 41–47.

    Article  CAS  PubMed  Google Scholar 

  27. Gottvaldová, M., J. Kucera, and V. Podrazký (1982) Enhancement of cellulase production by Trichoderma viride using carbon/nitrogen double-fed-batch. Biotechnol. Lett. 4: 229–231.

    Article  Google Scholar 

  28. Han, X., W. Song, G. Liu, Z. Li, P. Yang, and Y. Qu (2017) Improving cellulase productivity of Penicillium oxalicum RE-10 by repeated fed-batch fermentation strategy. Bioresour. Technol. 227: 155–163.

    Article  CAS  PubMed  Google Scholar 

  29. Lam, H. L., P. S. Varbanov, J. J. Klemeš, and J. Yan (2016) Green applied energy for sustainable development. Appl. Energy. 161: 601–604.

    Article  Google Scholar 

  30. Barnes, D. I. (2015) Understanding pulverised coal, biomass and waste combustion - A brief overview. Appl. Therm. Eng. 74: 89–95.

    Article  CAS  Google Scholar 

  31. Hrnčič, M. K., G. Kravanja, and Z. Knez (2016) Hydrothermal treatment of biomass for energy and chemicals. Energy. 116: 1312–1322.

    Article  Google Scholar 

  32. Sun, R. C., X. F. Sun, and J. Tomkinson (2003) Hemicelluloses and their derivatives. ACS Symp. Ser. Am. Chem. Soc. 864: 2–22.

    Google Scholar 

  33. Klemm, D., B. Heublein, H. P. Fink, and A. Bohn (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. Engl. 44: 3358–3393.

    Article  CAS  PubMed  Google Scholar 

  34. Felby, C. (2009) Biomass recalcitrance: deconstructing the plant cell wall for bioenergy. Edited by Michael E. Himmel. ChemSusChem. 2: 593.

    Article  CAS  Google Scholar 

  35. Zhao, C., Z. Zou, J. Li, H. Jia, J. Liesche, H. Fang, and S. Chen (2017) A novel and efficient bioprocess from steam exploded corn stover to ethanol in the context of on-site cellulase production. Energy. 123: 499–510.

    Article  CAS  Google Scholar 

  36. Fang, H., C. Zhao, Q. Kong, Z. Zou, and N. Chen (2016) Comprehensive utilization and conversion of lignocellulosic biomass for the production of long chain α,ω-dicarboxylic acids. Energy. 116: 177–189.

    Article  CAS  Google Scholar 

  37. Shetty, J. K., O. J. Lantero, and N. Dunn-Coleman (2005) Technological advances in ethanol production. Int. Sugar J. 107: 605–610.

    CAS  Google Scholar 

  38. Xie, G., D. C. Bruce, J. F. Challacombe, O. Chertkov, J. C. Detter, P. Gilna, C. S. Han, S. Lucas, M. Misra, G. L. Myers, P. Richardson, R. Tapia, N. Thayer, L. S. Thompson, T. S. Brettin, B. Henrissat, D. B. Wilson, and M. J. McBride (2007) Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii. Appl. Environ. Microbiol. 73: 3536–3546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bischof, R. H., J. Ramoni, and B. Seiboth (2016) Cellulases and beyond: the first 70 years of the enzyme producer Trichoderma reesei. Microb. Cell Fact. 15: 106.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Liu, G., L. Zhang, Y. Qin, G. Zou, Z. Li, X. Yan, X. Wei, M. Chen, L. Chen, K. Zheng, J. Zhang, L. Ma, J. Li, R. Liu, H. Xu, X. Bao, X. Fang, L. Wang, Y. Zhong, W. Liu, H. Zheng, S. Wang, C. Wang, L. Xun, G. P. Zhao, T. Wang, Z. Zhou, and Y. Qu (2013) Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes. Sci. Rep. 3: 1569.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Himmel, M. E., S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, and T. D. Foust (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science. 315: 804–807.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, Y. H. and L. R. Lynd (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol. Bioeng. 88: 797–824.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, Y. and J. Yang (2006) Comparison of four cellulase activity measurement methods. Food Res. Dev. 27: 116–118.

    Google Scholar 

  44. Percival Zhang, Y. H., M. E. Himmel, and J. R. Mielenz (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol. Adv. 24: 452–481.

    Article  CAS  PubMed  Google Scholar 

  45. Kongruang, S., M. J. Han, C. I. G. Breton, and M. H. Penner (2004) Quantitative analysis of cellulose-reducing ends. Appl. Biochem. Biotechnol. 113: 213–231.

    Article  PubMed  Google Scholar 

  46. Wang, W., J. Liu, G. Chen, Y. Zhang, and P. Gao (2003) Function of a low molecular weight peptide from Trichoderma pseudokoningii S38 during cellulose biodegradation. Curr. Microbiol. 46: 371–379.

    Article  PubMed  Google Scholar 

  47. Du, R., R. Huang, R. Su, M. Zhang, M. Wang, J. Yang, W. Qia, and Z. He (2013) Enzymatic hydrolysis of lignocellulose: SEC-MALLS analysis and reaction mechanism. Rsc Adv. 3: 1871–1877.

    Article  CAS  Google Scholar 

  48. Song, Y., P. G. Ranjith, and B. Wu (2019) Development and experimental validation of a computational fluid dynamics-discrete element method sand production model. J. Nat. Gas. Sci. Eng. 73: 103052.

    Article  Google Scholar 

  49. Ike, M., J. Park, M. Tabuse, and K. Tokuyasu (2010) Cellulase production on glucose-based media by the UV-irradiated mutants of Trichoderma reesei. Appl. Microbiol. Biotechnol. 87: 2059–2066.

    Article  CAS  PubMed  Google Scholar 

  50. Joglekar, A. V. and N. G. Karanth (1984) Studies on cellulase production by a mutant-penicillium funiculosum uv-49. Biotechnol. Bioeng. 26: 1079–1084.

    Article  CAS  PubMed  Google Scholar 

  51. He, J., Y. Bing, Z. Keying, D. Xuemei, and C. Daiwen (2009) Strain improvement of Trichoderma reesei Rut C-30 for increased cellulase production. Indian. J. Microbiol. 49: 188–195.

    Article  CAS  Google Scholar 

  52. Xu, F., J. Wang, S. Chen, W. Qin, Z. Yu, H. Zhao, X. Xing, and H. Li (2011) Strain improvement for enhanced production of cellulase in Trichoderma viride. Prikl Biokhim Mikrobiol. 47: 61–65.

    CAS  PubMed  Google Scholar 

  53. Vu, V. H., T. A. Pham, and K. Kim (2011) Improvement of fungal cellulase production by mutation and optimization of solid state fermentation. Mycobiology. 39: 20–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang, S. W., M. Xing, G. Liu, S. W. Yu, J. Wang, and S. L. Tian (2012) Improving cellulase production in Trichoderma koningii through RNA interference on ace1 gene expression. J. Microbiol. Biotechnol. 22: 1133–1140.

    Article  PubMed  Google Scholar 

  55. Limón, M. C., T. Pakula, M. Saloheimo, and M. Penttilä (2011) The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30. Microb. Cell Fact. 10: 40.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fei, Z., X. Zhao, and F. Bai (2018) Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresour. Technol. 247: 676–683.

    Article  Google Scholar 

  57. Yan, L., H. Zhong, J. Zuo, Z. Chen, Y. Luo, Q. Chen, and H. Wu (2018) Optimization of culture condition in Trichoderma reesei Tu6-VHb which transferred VHb gene cellulase production by surface method. Zhongguo Xu Mu Shou Yi. 45: 663–672.

    Google Scholar 

  58. Woodward, J. and S. L. Arnold (1981) The inhibition of β-glucosidase activity in Trichoderma reesei C30 cellulase by derivatives and isomers of glucose. Biotechnol. Bioeng. 23: 1553–1562.

    Article  CAS  Google Scholar 

  59. Peciulyte, A., G. E. Anasontzis, K. Karlström, P. T. Larsson, and L. Olsson (2014) Morphology and enzyme production of Trichoderma reesei Rut C-30 are affected by the physical and structural characteristics of cellulosic substrates. Fungal Genet. Biol. 72: 64–72.

    Article  CAS  PubMed  Google Scholar 

  60. Kumar Ramamoorthy, N., T. R. Sambavi, and S. Renganathan (2019) A study on cellulase production from a mixture of lignocellulosic wastes. Process Biochem. 83: 148–158.

    Article  CAS  Google Scholar 

  61. Liu, Y., Y. Zhang, J. Xu, M. He, X. Zhuang, and Z. Yuan (2014) Cellulase production by solid-state fermentation with multi-strains. Chem. Eng. 42: 6–9.

    Google Scholar 

  62. Wen, Z., W. Liao, and S. Chen (2005) Production of cellulase/β-glucosidase by the mixed fungi culture Trichoderma reesei and Aspergillus phoenicis on dairy manure. Process Biochem. 40: 3087–3094.

    Article  CAS  Google Scholar 

  63. Singhania, R. R., R. K. Sukumaran, A. K. Patel, C. Larroche, and A. Pandey (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46: 541–549.

    Article  CAS  Google Scholar 

  64. Srivastava, N., M. Srivastava, P. K. Mishra, V. K. Gupta, G. Molina, S. Rodriguez-Couto, A. Manikanta, and P. W. Ramteke (2018) Applications of fungal cellulases in biofuel production: Advances and limitations. Renew. Sustain. Energy Rev. 82: 2379–2386.

    Article  CAS  Google Scholar 

  65. Jiang, L., B. Wang, H. Bai, Q. Yong, and S. Yu (2016) Influence of periodic enzyme and mycelia recovery on cellulase production by Trichoderma reesei. Biomass Chem. Eng. 50: 49–55.

    Google Scholar 

  66. Wang, B., Y. Wu, H. Bai, L. Jiang, Q. Yong, and S. Yu (2018) Effect of fed-batch cultivation with regulated aeration on cellulase production by Trichoderma reesei. J. For. Eng. 3: 78–83.

    Google Scholar 

  67. Liu, Y. T., Z. Y. Luo, C. N. Long, H. D. Wang, M. N. Long, and Z. Hu (2011) Cellulase production in a new mutant strain of Penicillium decumbens ML-017 by solid state fermentation with rice bran. New Biotechnol. 28: 733–737.

    Article  CAS  Google Scholar 

  68. Lijuan, M., C. Li, Z. Yang, W. Jia, D. Zhang, and S. Chen (2013) Kinetic studies on batch cultivation of Trichoderma reesei and application to enhance cellulase production by fed-batch fermentation. J. Biotechnol. 166: 192–197.

    Article  Google Scholar 

  69. Saini, R., J. K. Saini, M. Adsul, A. K. Patel, A. Mathur, D. Tuli, and R. R. Singhania (2015) Enhanced cellulase production by Penicillium oxalicum for bio-ethanol application. Bioresour. Technol. 188: 240–246.

    Article  CAS  PubMed  Google Scholar 

  70. Li, X., X. Song, X. Li, J. Ouyang, and Y. Fan (2016) Cellulase production by solid-state fermentation of bagasse. Sheng Wu Jia Gong Guo Cheng. 14: 29–32.

    Google Scholar 

  71. Li, Y., C. Liu, F. Bai, and X. Zhao (2016) Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresour. Technol. 216: 503–510.

    Article  CAS  PubMed  Google Scholar 

  72. Ben Taher, I., H. Bennour, P. Fickers, and M. Hassouna (2017) Valorization of potato peels residues on cellulase production using a mixed culture of Aspergillus niger ATCC 16404 and Trichoderma reesei DSMZ 970. Waste Biomass Valor. 8: 183–192.

    Article  CAS  Google Scholar 

  73. Callow, N. V., C. S. Ray, M. A. Kelbly, and L. K. Ju (2016) Nutrient control for stationary phase cellulase production in Trichoderma reesei Rut C-30. Enzyme Microb. Technol. 82: 8–14.

    Article  CAS  PubMed  Google Scholar 

  74. Wang, L., B. Wang, Q. Yong, and S. Yu (2018) Periodical enzyme recovery to improve cellulase from pulp. Sheng Wu Jia Gong Guo Cheng. 16: 72–79.

    CAS  Google Scholar 

  75. Dong, M., S. Wang, Y. Wang, F. Xu, W. Li, J. Chen, J. Liu, and W. Hu (2016) Research process of filamentous fungi on carbon source metabolism regulations during cellulase synthesis. Zhongguo Niangzao. 35: 1–4.

    Google Scholar 

  76. Antonella, A., S. Giacobbe, and V. Faraco (2013) Regulation of cellulase and hemicellulase gene expression in fungi. Curr. Genomics. 14: 230–249.

    Article  Google Scholar 

  77. Schreiber, G., H. Kolar, R. Foisner, and C. P. Kubicek (1986) Choline stimulates synthesis of extracellular proteins in Trichoderma reesei QM 9414. Arch. Microbiol. 144: 41–47.

    Article  CAS  Google Scholar 

  78. El-Gogary, S., A. Leite, O. Crivellaro, D. E. Eveleigh, and H. el-Dorry (1989) Mechanism by which cellulose triggers cello-biohydrolase I gene expression in Trichoderma reesei. Proc. Natl. Acad. Sci. U S A. 86: 6138–6141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kubicek, C. P., G. Mhlbauer, M. Klotz, E. John, and E. M. Kubicek-Pranz (1988) Properties of a conidial-bound cellulase enzyme system from Trichoderma reesei. J. Gen. Microbiol. 5: 1215–1222.

    Google Scholar 

  80. Metz, B., V. Seidl-Seiboth, T. Haarmann, A. Kopchinskiy, P. Lorenz, B. Seiboth, and C. P. Kubicek (2011) Expression of biomass-degrading enzymes is a major event during conidium development in Trichoderma reesei. Eukaryotic Cell. 10: 1527–1535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kubicek, C. P., R. Messner, F. Gruber, R. L. Mach, and E. M. Kubicek-Pranz (1993) The Trichoderma cellulase regulatory puzzle: From the interior life of a secretory fungus. Enzyme Microb. Technol. 15: 90–99.

    Article  CAS  PubMed  Google Scholar 

  82. Schmoll, M. and C. P. Kubicek (2005) Ooc1, a unique gene expressed only during growth of Hypocrea jecorina (anamorph: Trichoderma reesei) on cellulose. Curr. Genet. 48: 126–133.

    Article  CAS  PubMed  Google Scholar 

  83. Li, Z., L. Zhang, X. Li, J. Zhu, S. Yu, and Q. Yong (2011) Effect of medium components on cellulase production by Trichoderma reesei. Chem. Ind. For. Prod. 31: 55–59.

    Google Scholar 

  84. Nogueira, K. M. V., M. do N. Costa, R. G. de Paula, F. C. Mendonça-Natividade, R. Ricci-Azevedo, and R. N. Silva (2015) Evidence of cAMP involvement in cellobiohydrolase expression and secretion by Trichoderma reesei in presence of the inducer sophorose. BMC Microbiol. 15: 195.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Mandels, M. and E. T. Reese (1960) Induction of cellulase in fungi by cellobiose. J. Bacteriol. 79: 816–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Huang, T. T. and J. M. Wages (2016) New-to-nature sophorose analog: a potent inducer for gene expression in Trichoderma reesei. Enzyme Microb. Technol. 85: 44–50.

    Article  CAS  PubMed  Google Scholar 

  87. Ying, X., L. Yang, and L. Xia (2018) High-level production of a fungal β-glucosidase with application potentials in the cost-effective production of Trichoderma reesei cellulase. Process Biochem. 70: 55–60.

    Article  Google Scholar 

  88. Lo, C. M., Q. Zhang, N. V. Callow, and L. K. Ju (2010) Roles of extracellular lactose hydrolysis in cellulase production by Trichoderma reesei Rut C30 using lactose as inducing substrate. Process Biochem. 45: 1494–1503.

    Article  CAS  Google Scholar 

  89. Warzywoda, M., V. Ferre, and J. Pourquie (1983) Development of a culture medium for large-scale production of cellulolytic enzymes by Trichoderma reesei. Biotechnol. Bioeng. 25: 3005–3011.

    Article  CAS  PubMed  Google Scholar 

  90. Gu, B., Z. Huang, G. Huang, X. Qiu, J. Lv, and T. Zhang (2016) Enzymatic hydrolysis of rice straw by Trichoderma reesei cellulase. J. Anhui Agri. Sci. 44: 1–2.

    CAS  Google Scholar 

  91. Li, C., F. Lin, L. Zhou, L. Qin, B. Li, Z. Zhou, M. Jin, and Z. Chen (2017) Cellulase hyper-production by Trichoderma reesei mutant SEU-7 on lactose. Biotechnol. Biofuels. 10: 228.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Sternberg, D. and G. R. Mandels (1979) Induction of cellulolytic enzymes in Trichoderma reesei by sophorose. J. Bacteriol. 139: 761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Mandels, M., F. W. Parrish, and E. T. Reese (1962) Sophorose as an inducer of cellulase in Trichoderma viride. J. Bacteriol. 83: 400–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Vaheri, M., M. Leisola, and V. Kauppinen (1979) Transglyco-sylation products of cellulase system of Trichoderma reesei. Biotechnol. Lett. 1: 41–46.

    Article  CAS  Google Scholar 

  95. Znameroski, E. A., S. T. Coradetti, C. M. Roche, J. C. Tsai, A. T. Iavarone, J. H. D. Cate, and N. L. Glass (2012) Induction of lignocellulose-degrading enzymes in Neurospora crassa by cellodextrins. Proc. Natl. Acad. Sci. U S A. 109: 6012–6017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Su, C., J. He, P. Xiong, C. Yue, F. Yu, and F. Sun (2016) Cellulase production from the hot water pretreated rice straw by Trichoderma reesei Rut-C30. Food Ferment. Ind. 42: 14–22.

    Google Scholar 

  97. Singh, A., J. D. Van Hamme, and O. P. Ward (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol. Adv. 25: 99–121.

    Article  CAS  PubMed  Google Scholar 

  98. Layman, P. L. (1985) Industrial surfactants set for strong growth. Chem. Eng. News. 63: 23–44.

    Article  Google Scholar 

  99. Jian, H., X. Liao, L. Zhu, W. Zhang, and J. Jiang (2011) Synergism and foaming properties in binary mixtures of a biosurfactant derived from Camellia oleifera Abel and synthetic surfactants. J. Colloid. Interface Sci. 359: 487–492.

    Article  CAS  PubMed  Google Scholar 

  100. Joshi, S., C. Bharucha, S. Jha, S. Yadav, A. Nerurkar, and A. J. Desai (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour. Technol. 99: 195–199.

    Article  CAS  PubMed  Google Scholar 

  101. Mulligan, C. N. (2009) Recent advances in the environmental applications of biosurfactants. Curr. Opin. Colloid. Interface Sci. 14: 372–378.

    Article  CAS  Google Scholar 

  102. Huang, X., C. Shen, J. Liu, and L. Lu (2015) Improved volatile fatty acid production during waste activated sludge anaerobic fermentation by different bio-surfactants. Chem. Eng. J. 264: 280–290.

    Article  CAS  Google Scholar 

  103. Eriksson, T., J. Börjesson, and F. Tjerneld (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Technol. 31: 353–364.

    Article  CAS  Google Scholar 

  104. Mandels, M., J. E. Medeiros, R. E. Andreotti, and F. H. Bissett (1981) Enzymatic hydrolysis of cellulose: Evaluation of cellulase culture filtrates under use conditions. Biotechnol. Bioeng. 23: 2009–2026.

    Article  CAS  Google Scholar 

  105. Reese, E. T. and A. Maguire (1969) Surfactants as stimulants of enzyme production by microorganisms. Appl. Microbiol. 17: 242–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fang, H., X. Song, C. Zhao, Z. Chang, J. Chu, and Q. Yong (2009) Cellulase production from mixed fermentation of Trichoderma reesei RUT C-30 and Apsergillus niger NL02. Chem. Ind. For. Prod. 29: 15–19.

    CAS  Google Scholar 

  107. Fang, H., C. Zhao, X. Y. Song, M. Chen, Z. Chang, and J. Chu (2013) Enhanced cellulolytic enzyme production by the synergism between Trichoderma reesei RUT-C30 and Aspergillus niger NL02 and by the addition of surfactants. Biotechnol. Bioprocess Eng. 18: 390–398.

    Article  CAS  Google Scholar 

  108. Liu, J., X. Yuan, G. Zeng, J. Shi, and S. Chen (2006) Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochem. 41: 2347–2351.

    Article  CAS  Google Scholar 

  109. Callow, N. V. and L. K. Ju (2012) Promoting pellet growth of Trichoderma reesei Rut C30 by surfactants for easy separation and enhanced cellulase production. Enzyme Microb. Technol. 50: 311–317.

    Article  CAS  PubMed  Google Scholar 

  110. Lo, C. M. and L. K. Ju (2009) Sophorolipids-induced cellulase production in cocultures of Hypocrea jecorina Rut C30 and Candida bombicola. Enzyme Microb. Technol. 44: 107–111.

    Article  CAS  Google Scholar 

  111. Wang, H. Y., B. Q. Fan, C. H. Li, S. Liu, and M. Li (2011) Effects of rhamnolipid on the cellulase and xylanase in hydrolysis of wheat straw. Bioresour. Technol. 102: 6515–6521.

    Article  CAS  PubMed  Google Scholar 

  112. Verma, N., M. C. Bansal, and V. Kumar (2011) Pea peel waste: a lignocellulosic waste and its utility in cellulase production by Trichoderma reesei under solid state cultivation. Bioresources. 6: 1505–1519.

    Article  CAS  Google Scholar 

  113. Xia, Y., L. Yang, and L. Xia (2018) Preparation of a novel soluble inducer by cellobiase-release microcapsules and its application in cellulase production. J. Biotechnol. 279: 22–26.

    Article  CAS  PubMed  Google Scholar 

  114. Masakazu, I. and K. Tokuyasu (2018) Cellulase production of Trichoderma reesei (Hypocrea jecorina) by continuously fed cultivation using sucrose as primary carbon source. J. Appl. Glycosci. 65: 51–56.

    Article  Google Scholar 

  115. Li, Y. H., X. Y. Zhang, F. Zhang, L. C. Peng, D. B. Zhang, A. Kondo, F. W. Bai, and X. Q. Zhao (2018) Optimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover. Biotechnol. Biofuels. 11: 49.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rubin, E. M. (2008) Genomics of cellulosic biofuels. Nature. 454: 841–845.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Youth Fund (31600463); and the Natural Science Youth Foundation of Jiangsu province (BK20150874).

The authors declare no conflict of interest.

No ethical approval and no informed consent required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Song.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, H., Song, X., Lai, C. et al. Progress in Preparation of Cellulase from Lignocellulose Using Fungi. Biotechnol Bioproc E 26, 871–886 (2021). https://doi.org/10.1007/s12257-021-0282-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0282-z

Keywords

Navigation