Skip to main content

Advertisement

Log in

Lignocellulosic biomass: Hurdles and challenges in its valorization

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass (LCB) is globally available and sustainable feedstock containing sugar-rich platform that can be converted to biofuels and specialty products through appropriate processing. This review focuses on the efforts required for the development of sustainable and economically viable lignocellulosic biorefinery to produce carbon neutral biofuels along with the specialty chemicals. Sustainable biomass processing is a global challenge that requires the fulfillment of fundamental demands concerning economic efficiency, environmental compatibility, and social responsibility. The key technical challenges in continuous biomass supply and the biological routes for its saccharification with high yields of sugar sources have not been addressed in research programs dealing with biomass processing. Though many R&D endeavors have directed towards biomass valorization over several decades, the integrated production of biofuels and chemicals still needs optimization from both technical and economical perspectives. None of the current pretreatment methods has advantages over others since their outcomes depend on the type of feedstock, downstream process configuration, and many other factors. Consolidated bio-processing (CBP) involves the use of single or consortium of microbes to deconstruct biomass without pretreatment. The use of new genetic engineering tools for natively cellulolytic microbes would make the CBP process low cost and ecologically friendly. Issues arising with chemical characteristics and rigidity of the biomass structure can be a setback for its viability for biofuel conversion. Integration of functional genomics and system biology with synthetic biology and metabolic engineering undoubtedly led to generation of efficient microbial systems, albeit with limited commercial potential. These efficient microbial systems with new metabolic routes can be exploited for production of commodity chemicals from all the three components of biomass. This paper provides an overview of the challenges that are faced by the processes converting LCB to commodity chemicals with special reference to biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Hamid AM, Solbiati JO, Cann IK (2013) Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 82:1–28

    CAS  PubMed  Google Scholar 

  • Adsul M, Bastawde KB, Gokhale DV (2009) Biochemical characterization of two xylanases from yeast Pseudozyma hubeiensis producing only xylooligosaccharides. Bioresour Technol 100:6488–6495

    CAS  PubMed  Google Scholar 

  • Adsul MG, Varma AJ, Gokhale DV (2007) Lactic acid production from waste sugarcane bagasse derived cellulose. Green Chem 9:58–62

    CAS  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    CAS  PubMed  Google Scholar 

  • Ali SS, Nugent B, Mullins E, Doohan FM (2016) Fungal-mediated consolidated bioprocessing: the potential of Fusarium oxysporum for the lignocellulosic ethanol industry. AMB Exp6:13

  • Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    CAS  Google Scholar 

  • Alonso DM, Wettstein SG, Dumesic JA (2013) Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem 15:584–595

    CAS  Google Scholar 

  • Amore A, Ciesielski PN, Lin CY, Salvachúa D, i Nogué VS (2016) Development of lignocellulosic biorefinery technologies: recent advances and current challenges. Aus J Chem 69:1201-1218

  • Amorim C, Silvério SC, Rodrigues LR (2019) One-step process for producing prebiotic arabino-xylooligosaccharides from brewer’s spent grain employing. Trichoderma species. Food Chem 270:86–94

    CAS  PubMed  Google Scholar 

  • Barakat A, de Vries H, Rouau X (2013) Dry fractionation process as an important step in current and future lignocellulose biorefineries: a review. Bioresource Technol 134:362–373

    CAS  Google Scholar 

  • Beckham GT, Johnson CW, Karp EM, Salvachúa D, Vardon DR (2016) Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol 42:40–53

    CAS  PubMed  Google Scholar 

  • Blanch HW, Simmons BA, Klein-Marcuschamer D (2011) Biomass deconstruction to sugars. Biotechnol J6:1086–1102

    Google Scholar 

  • Braga CM, da Silva DP, da Silva Lima DJ, Paixão DA, da Cruz Pradella JG, Farinas CS (2014) Addition of feruloyl esterase and xylanase produced on-site improves sugarcane bagasse hydrolysis. Bioresour Technol 170:316–324

    CAS  PubMed  Google Scholar 

  • Brandt A, Gräsvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583

    CAS  Google Scholar 

  • Bruijnincx PC, Rinaldi R, Weckhuysen BM (2015) Unlocking the potential of a sleeping giant: lignins as sustainable raw materials for renewable fuels, chemicals and materials. Green Chem 17:4860–4861

    CAS  Google Scholar 

  • Burgin T, Ståhlberg J, Mayes HB (2018) Advantages of a distant cellulase catalytic base. J Biol Chem 293:4680–4687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bussamra BC, Freitas S, da Costa AC (2015) Improvement on sugar cane bagasse hydrolysis using enzymatic mixture designed cocktail. Bioresour Technol 187:173–181

    CAS  PubMed  Google Scholar 

  • Chandna S, Thakur NS, Reddy YN, Kaur R, Bhaumik J (2019) Engineering lignin stabilized bimetallic nanocomplexes: structure, mechanistic elucidation, antioxidant, and antimicrobial potential. ACS Biomater Sci Eng 5:3212–3227

    CAS  Google Scholar 

  • Chastel CF, Navarro D, Haon M, Grisel S, Gimbert IS, Chevret D, Fanuel M, Henrissat B, Heiss-Blanquet S, Margeot A, Berrin JG (2019) AA16, a new lytic polysaccharide monooxygenase family identified in fungal secretomes. Biotechnol Biofuels 12:55

    Google Scholar 

  • Chen X, Wang W, Ciesielski P, Trass O, Park S, Tao L, Tucker MP (2015) Improving sugar yields and reducing enzyme loadings in the deacetylation and mechanical refining (DMR) process through multistage disk and Szego refining and corresponding techno-economic analysis. ACS Sust Chem Engin 4:324–333

    Google Scholar 

  • Chen Y, Stevens MA, Zhu Y, Holmes J, Xu H (2013) Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnol Biofuels 6:8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chylenski P, Forsberg Z, Ståhlberg J, Várnai A, Lersch M, Bengtsson O, Sæbø S, Horn SJ, Eijsink VG (2017) Development of minimal enzyme cocktails for hydrolysis of sulfite-pulped lignocellulosic biomass. J Biotechnol 246:16–23

    CAS  PubMed  Google Scholar 

  • Ciesielski PN, Crowley MF, Nimlos MR, Sanders AW, Wiggins GM, Robichaud D, Donohoe BS, Foust TD (2014) Biomass particle models with realistic morphology and resolved microstructure for simulations of intraparticle transport phenomena. Energy Fuels 29:242–254

    Google Scholar 

  • Ciesielski PN, Matthews JF, Tucker MP, Beckham GT, Crowley MF, Himmel ME, Donohoe BS (2013) 3D electron tomography of pretreated biomass informs atomic modeling of cellulose microfibrils. ACS nano7:8011-8019

    CAS  PubMed  Google Scholar 

  • Cunha JT, Soares PO, Romani A, Thevelein JM, Domingues L (2019) Xylose fermentation efficiency of industrial Saccharomyces cerevisiae yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways. Biotechnol. Biofuels 12:20

    PubMed  PubMed Central  Google Scholar 

  • de Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. Industrial Bioref & White Biotechnol Elsevier, Amsterdam, pp 3–33

    Google Scholar 

  • Demain AL (2005) Newcomb M and Wu JD, Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dessie W, Xin F, Zhang W, Jiang Y, Wu H, Ma J, Jiang M (2018) Appl Microbiol Biotechnol 102:9893–9910

    CAS  PubMed  Google Scholar 

  • Ding SY, Liu YS, Zeng Y, Himmel ME, Baker JO, Bayer EA (2012) How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338:1055–1060

    CAS  PubMed  Google Scholar 

  • dos Reis TF, de Lima PB, Parachin NS, Mingossi FB, de Castro Oliveira JV, Ries LN, Goldman GH (2016) Identification and characterization of putative xylose and cellobiose transporters in Aspergillus nidulans. Biotechnol Biofuels 9:204

    PubMed  PubMed Central  Google Scholar 

  • Dutta K, Daverey A, Lin JG (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renewable energy 69:114–122

    CAS  Google Scholar 

  • Feng Q, Liu ZL, Weber SA, Li S (2018) Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae. PloS one 13:e0195633

    PubMed  PubMed Central  Google Scholar 

  • Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Nat Acad Sci 108:E1195–E1203

    PubMed  Google Scholar 

  • Fincher GB (2009) Revolutionary times in our understanding of cell wall biosynthesis and remodeling in the grasses. Plant physiol 149:27–37

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gräsvik J, Winestrand S, Normark M, Jönsson LJ, Mikkola JP (2014) Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass. BMC Biotechnol 14:34

    PubMed  PubMed Central  Google Scholar 

  • Hassan SS, Williams GA, Jaiswal AK (2019) Lignocellulosic biorefineries in Europe: current state and prospects. Trends Biotechnol 37:231–234

    CAS  PubMed  Google Scholar 

  • Hasunuma T, Ismail KS, Nambu Y, Kondo A (2014) Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. J Biosci Bioeng 117:165–169

    CAS  PubMed  Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    CAS  PubMed  Google Scholar 

  • Himmel ME, Xu Q, Luo Y, Ding SY, Lamed R, Bayer EA (2010) Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1:323–341

    CAS  Google Scholar 

  • Hinman ND, Schell DJ, Riley J, Bergeron PW, Walter PJ (1992) Preliminary estimate of the cost of ethanol production for SSF technology. Appl Biochem Biotechnol. 34:639

    Google Scholar 

  • Hong J, Yang H, Zhang K, Liu C, Zou S, Zhang M (2014) Development of a cellulolytic Saccharomyces cerevisiae strain with enhanced cellobiohydrolase activity. World J Microbiol Biotechnol 30:2985–2993

    CAS  PubMed  Google Scholar 

  • Huang S, Xue T, Wang Z, Ma Y, He X, Hong J, Zou S, Song H, Zhang M (2018) Furfural-tolerant Zymomonas mobilis derived from error-prone PCR-based whole genome shuffling and their tolerant mechanism. Appl Microbiol Biotechnol 102:3337–3347

    CAS  PubMed  Google Scholar 

  • Inouye H, Zhang Y, Yang L, Venugopalan N, Fischetti RF, Gleber SC, Vogt S, Fowle W, Makowski B, Tucker M, Ciesielski P (2014) Multiscale deconstruction of molecular architecture in corn stover. Sci Rep 4:3756

    PubMed  PubMed Central  Google Scholar 

  • Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chem 6:4497–4559

    CAS  Google Scholar 

  • Jain AK, Khanna M, Erickson M, Huang HX (2010) An integrated biogeochemical and economic analysis of bioenergy crops in the Midwestern United States. Global Change Biol. Bioener 2(5):217–234

    Google Scholar 

  • Joshi CP, Bhandari S, Ranjan P, Kalluri UC, Liang X, Fujino T, Samuga A (2004) Genomics of cellulose biosynthesis in poplars. New Phytol 164:53–61

    CAS  Google Scholar 

  • Jung YH, Kim S, Yang J, Seo JH, Kim KH (2017) Intracellular metabolite profiling of Saccharomyces cerevisiae evolved under furfural. Microb Biotechnol 10:395–404

    CAS  PubMed  Google Scholar 

  • Kallioinen A, Puranen T, Siika-aho M (2014) Mixtures of thermostable enzymes show high performance in biomass saccharification. Appl Biochem Biotechnol 173:1038–1056

    CAS  PubMed  Google Scholar 

  • Kang MK, Nielsen J (2017) Biobased production of alkanes and alkenes through metabolic engineering of microorganisms. J Indus Microbiol Biotechnol 44:613–622

    CAS  Google Scholar 

  • Keegstra K, Walton J (2006) β-Glucans—brewer’s bane, dietician’s delight. Science 311:1872–1873

    CAS  PubMed  Google Scholar 

  • Kissin YV (2001) Chemical mechanisms of catalytic cracking over solid acidic catalysts: alkanes and alkenes. Catalysis Reviews 43:85–146

    CAS  Google Scholar 

  • Klein-Marcuschamer D, Blanch HW (2015) Renewable fuels from biomass: technical hurdles and economic assessment of biological routes. AIChE J 61:2689–2701

    CAS  Google Scholar 

  • Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087

    CAS  PubMed  Google Scholar 

  • Klein-Marcuschamer D, Simmons BA, Blanch HW (2011) Techno-economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid pre-treatment. Biofuel Bioprod Bioref 5:562–569

    CAS  Google Scholar 

  • Koshland DE Jr (1953) Stereochemistry and the mechanism of enzymatic reactions. Biol Rev 28:416–436

    CAS  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res Article ID 280696

  • Kumar M, Thammannagowda S, Bulone V, Chiang V, Han KH, Joshi CP, Mansfield SD, Mellerowicz E, Sundberg B, Teeri T, Ellis BE (2009) An update on the nomenclature for the cellulose synthase genes in Populus. Trends Plant Sci 14:248–254

    CAS  PubMed  Google Scholar 

  • Kwak S, Jin YS (2017) Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Microb Cell Factory 16:82

    Google Scholar 

  • Lamers P, Tan EC, Searcy EM, Scarlata CJ, Cafferty KG, Jacobson JJ (2015) Strategic supply system design—a holistic evaluation of operational and production cost for a biorefinery supply chain. Biofuels Bioprod Bioref 9:648–660

    CAS  Google Scholar 

  • Leggio LL, Simmons TJ, Poulsen JC, Frandsen KE, Hemsworth GR, Stringer MA, Von Freiesleben P, Tovborg M, Johansen KS, De Maria L, Harris PV (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nature Comm 6:5961

    Google Scholar 

  • Lewandowski I (2015) Securing a sustainable biomass supply in a growing bioeconomy. Global Food Security 6:34–42

    Google Scholar 

  • Li H, Schmitz O, Alper HS (2016) Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter. Appl Microbiol100:10215-10223

    CAS  PubMed  Google Scholar 

  • Li J, Xu J, Cai P, Wang B, Ma Y, Benz JP, Tian C (2015) Functional analysis of two L-arabinose transporters from filamentous fungi reveals promising characteristics for improved pentose utilization in Saccharomyces cerevisiae. Appl Environ Microbiol 81:4062–4070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Wu HX, Dillon SK, Southerton SG (2009) Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata D. Don. BMC Genomics 10:41

    CAS  PubMed  Google Scholar 

  • Li X, Wu HX, Southerton SG (2011) Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics. BMC Genomics 12:480

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li YC, Gou ZX, Liu ZS, Tang YQ, Akamatsu T, Kida K (2014) Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain. Biotechnol Letts 36:2011–2021

    CAS  Google Scholar 

  • Liu C, Li Y, Hou Y (2019) Effects of alkalinity of ionic liquids on the structure of biomass in pretreatment process. Wood Sci Technol 53:177–789

    CAS  Google Scholar 

  • Liu F, Liu Q, Xu J, Li L, Cui YT, Lang R, Li L, Su Y, Miao S, Sun H, Qiao B, Wang A, Jerome F, Zhang T (2018) Catalytic cascade conversion of furfural to 1,4-pentanediol in a single reactor. Green Chem 20:1770–1776

    CAS  Google Scholar 

  • Liu ZL (2018) Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds. Appl Microbiol Biotechnol 102:5369–5390

    CAS  PubMed  Google Scholar 

  • Lopes AM, Ferreira Filho EX, Moreira LR (2018) An update on enzymatic cocktails for lignocellulose breakdown. J Appl Microbiol 125:632–645

    CAS  PubMed  Google Scholar 

  • Luo Z, Bao J (2015) Secretive expression of heterologous β-glucosidase in Zymomonas mobilis. Bioresour. Bioproc 2:29

    Google Scholar 

  • Luterbacher JS, Rand JM, Alonso DM, Han J, Youngquist JT, Maravelias CT, Pfleger BF, Dumesic JA (2014) Non-enzymatic sugar production from biomass using biomass derived γ-valerolactone. Science 343:277–280

    CAS  PubMed  Google Scholar 

  • Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82(6):1067–1078

    CAS  PubMed  Google Scholar 

  • Malgas S, Thoresen M, van Dyk JS, Pletschke BI (2017) Time dependence of enzyme synergism during the degradation of model and natural lignocellulosic substrates. Enzyme Microb Technol 103:1–11

    CAS  PubMed  Google Scholar 

  • Mans R, Daran JM, Pronk JT (2018) Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 50:47–56

    CAS  PubMed  Google Scholar 

  • Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, Granados ML (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189

    CAS  Google Scholar 

  • Mathew S, Aronsson A, Karlsson EN, Adlercreutz P (2018) Xylo-and arabinoxylooligosaccharides from wheat bran by endoxylanases, utilisation by probiotic bacteria, and structural studies of the enzymes. Appl Microbiol Biotechnol 102:3105–3120

    CAS  PubMed  Google Scholar 

  • Mayes HB, Knott BC, Crowley MF, Broadbelt LJ, Ståhlberg J, Beckham GT (2016) Who’s on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases. Chem Sci 7:5955–5968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Méndez Arias J, Modesto LF, Polikarpov I, Pereira N Jr (2016) Design of an enzyme cocktail consisting of different fungal platforms for efficient hydrolysis of sugarcane bagasse: optimization and synergism studies. Biotechnol Prog 32:1222–1229

    PubMed  Google Scholar 

  • Mhetras N, Mapare V, Gokhale D (2019) Xylooligosaccharides (XOS) as emerging prebiotics: its production from lignocellulosic material. Adv Microbiol 9:14–20

    Google Scholar 

  • Mishra A, Kumar A, Ghosh S (2018) Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario. 3 Biotech 8: Article No. 142

  • Mohr A, Raman S (2013) Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy policy 63:114–122

    PubMed  PubMed Central  Google Scholar 

  • Morais AR, Bogel-Lukasik R (2013) Green chemistry and the biorefinery concept. Sustainable Chem Proc 1:18

    Google Scholar 

  • Mueller SC, Brown RM (1980) Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. The J Cell Biol 84:315–326

    CAS  PubMed  Google Scholar 

  • Nagraj AK, Singhvi M, RaviKumar V, Gokhale D (2014) Optimization studies for enhancing cellulase production by Penicillium janthinellum mutant EU2D-21 using response surface methodology. BioResources 9(2):1914–1923

    Google Scholar 

  • Nie Y, Hou Q, Li W, Bai C, Bai X, Ju M (2019) Efficient synthesis of furfural from biomass using SnCl4 as catalyst in ionic liquid. Molecules 24:594

    PubMed Central  Google Scholar 

  • Nielsen J, Keasling JD (2016) Engineering cellular metabolism. Cell 164:1185–1197

    CAS  PubMed  Google Scholar 

  • Paye JM, Guseva A, Hammer SK, Gjersing E, Davis MF, Davison BH, Olstad J, Donohoe BS, Nguyen TY, Wyman CE, Pattathil S (2016) Biological lignocellulose solubilization: comparative evaluation of biocatalysts and enhancement via cotreatment. Biotechnol Biofuels 9:8

    PubMed  PubMed Central  Google Scholar 

  • Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Stahlberg J, Beckham GT (2015) Fungal cellulases. Chem Rev 115:1308–1448

    CAS  PubMed  Google Scholar 

  • Pereira LG, Dias MO, Mariano AP, Maciel Filho R, Bonomi AM (2015) Economic and environmental assessment of n-butanol production in an integrated first and second generation sugarcane biorefinery: fermentative versus catalytic routes. Appl Energy160:120-131

    CAS  Google Scholar 

  • Polizeli MDLTM, Somera AF, Lucas RCD, Nozawa MSF, Michelin M (2017) In: Advances of basic science for second generation bioethanol from sugarcane. Ed. M.S. Buckeridge and A.P. Souza, Springer, Cham: Springer, pp-55-79

  • Quiroz-Castañeda RE, Folch-Mallol JL (2013) Hydrolysis of biomass mediated by cellulases for the production of sugars. Sustainable degradation of lignocellulosic biomass techniques, applications and commercialization, ed. A. Chandel and SS Da Silva, India, 119-55

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P (2014) Lignin valorization: improving lignin processing in the biorefinery. Science 344:1246843

    PubMed  Google Scholar 

  • Richard T, Chisti Y, Somerville C, Blanch HW, Babcock B (2012) The food versus fuel debate. Biofuels 3:635–648

    Google Scholar 

  • Richmond TA, Somerville CR (2000) The cellulose synthase superfamily. Plant physiol 124:495–498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richmond TA, Somerville CR (2001) Integrative approaches to determining Csl function. Plant cell walls .Springer, Dordrecht, pp. 131-143

    Google Scholar 

  • Rigoldi F, Donini S, Redaelli A, Parisini E, Gautieri A (2018) Engineering of thermostable enzymes for industrial applications. APL Bioeng 2:011501

    PubMed  PubMed Central  Google Scholar 

  • Rinaldi R, Jastrzebski R, Clough MT, Ralph J, Kennema M, Bruijnincx PC, Weckhuysen BM (2016) Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Ang Chem International Ed 55:8164–8215

    CAS  Google Scholar 

  • Rogers PL, Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobilis. In: Microbial reactions Springer. Heidelberg pp, Berlin, pp 37–84

    Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature454:841-845

  • Rulli MC, Bellomi D, Cazzoli A, De Carolis G, D’Odorico P (2016) The water-land-food nexus of first-generation biofuels. Sci Rep 6:22521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salvachúa D, Mohagheghi A, Smith H, Bradfield MF, Nicol W, Black BA, Biddy MJ, Dowe N, Beckham GT (2016) Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. Biotechnol Biofuels 9:28

    PubMed  PubMed Central  Google Scholar 

  • Satari B, Karimi K, Kumar R (2019) Cellulose solvent-based pretreatment for enhanced second-generation biofuel production: a review. Sustainable Energy Fuels 3:11–62

    CAS  Google Scholar 

  • Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog polym Sci 34:982–1021

    CAS  Google Scholar 

  • Scheller HV, Ulvskov P. (2010) Hemicelluloses. Annual review of plant biology. May 4:61.

  • Schirmer A, Rude MA, Li X, Popova E, Del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    CAS  PubMed  Google Scholar 

  • Searcy E, Flynn P, Ghafoori E, Kumar A (2007) The relative cost of biomass energy transport. Appl Biochem Biotechnol 137:639–652

    PubMed  Google Scholar 

  • Serrano-Ruiz JC, Luque R, Sepúlveda-Escribano A (2011) Transformations of biomass-derived platform molecules: from high added-value chemicals to fuels via aqueous-phase processing. Chem Soc Rev 40:5266–5281

    CAS  PubMed  Google Scholar 

  • Shi J, Thompson VS, Yancey NA, Stavila V, Simmons BA, Singh S (2013) Impact of mixed feedstocks and feedstock densification on ionic liquid pretreatment efficiency. Biofuels 4:63–72

    CAS  Google Scholar 

  • Shui ZX, Qin H, Wu B, Ruan ZY, Wang LS, Tan FR, Wang JL, Tang XY, Dai LC, Hu GQ, He MX (2015) Adaptive laboratory evolution of ethanologenic Zymomonas mobilis strain tolerant to furfural and acetic acid inhibitors. Appl Microbiol Biotechnol99:5739-5748

    CAS  PubMed  Google Scholar 

  • Singhvi M, Gokhale D (2013) Biomass to biodegradable polymer (PLA). RSC Adv 3:13558–13568

    CAS  Google Scholar 

  • Singhvi M, Joshi D, Adsul M, Varma A, Gokhale D (2010) D(-)lactic acid production from cellobiose and cellulose by Lactobacillus lactis mutant RM2-24. Green Chem 12:1106–1109

    CAS  Google Scholar 

  • Singhvi M, Zendo T, Sonomoto K (2018) Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and prospects. Appl Microbiol Biotechnol 102:5911–5924

    CAS  PubMed  Google Scholar 

  • Singhvi MS, Gokhale DV (2015) Biomass exploitation—a challenge finding its way to reality. Curr Sci 108:1593–1594

    Google Scholar 

  • Singhvi MS, Zinjarde SS, Gokhale DV (2019) Poly-Lactic acid (PLA): synthesis and biomedical applications. J Appl Microbiol https://doi.org/10.1111/jam.14290

    CAS  PubMed  Google Scholar 

  • Sokhansanj S, Hess JR (2009) Biomass supply logistics and infrastructure. Meth Mol Bio 581:1–25

    Google Scholar 

  • Sun N, Parthasarathi R, Socha AM, Shi J, Zhang S, Stavila V, Sale KL, Simmons BA, Singh S (2014) Understanding pretreatment efficacy of four cholinium and imidazolium ionic liquids by chemistry and computation. Green Chem 16:2546–2557

    CAS  Google Scholar 

  • Torget R, Walter P, Himmel M, Grohmann K (1991) Dilute-acid pretreatment of corn residues and short-rotation woody crops. Appl Biochem Biotechnol 28:75

    Google Scholar 

  • Vaishnav N, Singh A, Adsul M, Dixit P, Sandhu SK, Mathur A, Puri SK, Singhania RR (2018) Penicillium: the next emerging champion for cellulase production. Bioresour Technol Rep 2:131–140

    Google Scholar 

  • Wang M, Yu C, Zhao H (2016) Identification of an important motif that controls the activity and specificity of sugar transporters. Biotechnol Bioeng 113:1460–1467

    CAS  PubMed  Google Scholar 

  • Wang X, Gao Q, Bao J (2017) Enhancement of furan aldehydes conversion in Zymomonas mobilis by elevating dehydrogenase activity and cofactor regeneration. Biotechnol Biofuels 10:24

    PubMed  PubMed Central  Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–199

    CAS  PubMed  Google Scholar 

  • Xia J, Yang Y, Liu CG, Yang S, Bai FW (2019) Engineering Zymomonas mobilis for robust cellulosic ethanol production. Trends Biotechnol 37(9):960–972

    CAS  PubMed  Google Scholar 

  • Xu P, Donaldson LA, Gergely ZR, Staehelin LA (2007) Dual-axis electron tomography: a new approach for investigating the spatial organization of wood cellulose microfibrils. Wood Sci Technol 41:101

    CAS  Google Scholar 

  • Xu Q, Resch MG, Podkaminer K, Yang S, Baker JO, Donohoe BS, Wilson C, Klingeman DM, Olson DG, Decker SR, Giannone RJ (2016) Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. Sci Adv 2:e1501254

    PubMed  PubMed Central  Google Scholar 

  • Xu S, Pan D, Wu Y, Song X, Gao L, Li W, Das L, Xiao G (2018) Efficient production of furfural from xylose and wheat straw by bifunctional chromium phosphate catalyst in biphasic systems. Fuel Processing Technol 175:90–96

    CAS  Google Scholar 

  • Xu Z, Lei P, Zhai R, Wen Z, Jin M (2019) Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. Biotechnol Biofuels 12:32

    PubMed  PubMed Central  Google Scholar 

  • Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, Himmel ME, Zhang M (2016) Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol 9:699–717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Li W, Liu Q, Su M, Zhang T, Ma J (2019) Synthesis of maleic acid from biomass-derived furfural in the presence of KBr/graphitic carbon nitride (g-C3N4) catalyst and hydrogen peroxide. BioResources 14:5025–5044

    CAS  Google Scholar 

  • Yee KL, Jansen LE, Lajoie CA, Penner MH, Morse L, Kelly CJ (2018) Furfural and 5-hydroxymethyl-furfural degradation using recombinant manganese peroxidase. Enzyme Microb Technol 108:59–65

    CAS  PubMed  Google Scholar 

  • Yi X, Gu H, Gao Q, Liu ZL, Bao J (2015) Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment. Biotechnol Biofuels 8:153

    PubMed  PubMed Central  Google Scholar 

  • Yoo CG, Pu Y, Ragauskas AJ (2017) Ionic liquids: promising green solvents for lignocellulosic biomass utilization. Curr Opin Green Sustainable Chem 5:5–11

    Google Scholar 

  • Zhang K, Lu X, Li Y, Jiang X, Liu L, Wang H (2019) New technologies provide more metabolic engineering strategies for bioethanol production in Zymomonas mobilis. Appl Microbiol Biotechnol103(5):2087-2099

    CAS  PubMed  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    CAS  PubMed  Google Scholar 

  • Zhang Z, Harrison MD, Rackemann DW, Doherty WO, O’Hara IM (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18:360–381

    Google Scholar 

  • Zhao N, Bai Y, Liu CG, Zhao XQ, Xu JF, Bai FW (2014) Flocculating Zymomonas mobilis is a promising host to be engineered for fuel ethanol production from lignocellulosic biomass. Biotechnol J9:362–371

    Google Scholar 

  • Zhou J, Olson DG, Argyros DA, Deng Y, van Gulik WM, van Dijken JP, Lynd LR (2013) Atypical glycolysis in Clostridium thermocellum. Appl Environ Microbiol 79:3000–3008

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Li W, Mabon R, Broadbelt LJ (2017) A critical review on hemicellulose pyrolysis. Energy Technol 5:52–79

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamata S. Singhvi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singhvi, M.S., Gokhale, D.V. Lignocellulosic biomass: Hurdles and challenges in its valorization. Appl Microbiol Biotechnol 103, 9305–9320 (2019). https://doi.org/10.1007/s00253-019-10212-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-10212-7

Keywords

Navigation