Skip to main content
Log in

Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study was performed to evaluate the effectiveness of acidic pretreatment in increasing the enzymatic digestibility of alginate from brown macroalgae. Pretreatment with 1 % (w/v) sulfuric acid at 120 °C for 30 min produced oligosaccharides, mannuronic acid, and guluronic acid. Enzymatic saccharification of pretreated alginate by alginate lyases produced 52.2 % of the theoretical maximal sugar yield, which was only 7.5 % higher than the sugar yield obtained with unpretreated alginate. Mass spectrometric analyses of products of the two reactions revealed that acidic pretreatment and enzymatic saccharification produced saturated monomers (i.e., mannuronic and guluronic acid) with saturated oligosaccharides and unsaturated monomers (i.e., 4-deoxy-l-erythro-5-hexoseulose uronic acid; DEH), respectively. While DEH is further metabolized by microorganisms, mannuronic acid and guluronic acid are not metabolizable. Because of the poor efficacy in increasing enzymatic digestibility and owing to the formation of non-fermentable saturated monomers, acidic pretreatment cannot be recommended for enzymatic saccharification and fermentation of alginate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  CAS  Google Scholar 

  2. Chum HL, Warner E, Seabra JEA, Macedo IC (2014) A comparison of commercial ethanol production systems from Brazilian sugarcane and US corn. Biofuel Bioprod Biorefining 8:205–223

    Article  CAS  Google Scholar 

  3. Alper H, Stephanopoulos G (2009) Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nat Rev Microbiol 7:715–723

    Article  CAS  Google Scholar 

  4. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  CAS  Google Scholar 

  5. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29:896–907

    Article  CAS  Google Scholar 

  6. Andriamanantoanina H, Rinaudo M (2010) Characterization of the alginates from five madagascan brown algae. Carbohydr Polym 82:555–560

    Article  CAS  Google Scholar 

  7. Gacesa P (1988) Alginates. Carbohydr Polym 8:161–182

    Article  CAS  Google Scholar 

  8. Takase R, Ochiai A, Mikami B, Hashimoto W, Murata K (2010) Molecular identification of unsaturated uronate reductase prerequisite for alginate metabolism in Sphingomonas sp. A1. Biochim Biophys Acta 1804:1925–1936

    Article  CAS  Google Scholar 

  9. Murata K, Kawai S, Mikami B, Hashimoto W (2008) Superchannel of bacteria: biological significance and new horizons. Biosci Biotechnol Biochem 72:265–277

    Article  CAS  Google Scholar 

  10. Takeda H, Yoneyama F, Kawai S, Hashimoto W, Murata K (2011) Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ Sci 4:2575–2581

    Article  CAS  Google Scholar 

  11. Enquist-Newman M, Faust AME, Bravo DD, Santos CNS, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho MY, Donohoue PD, Luo L, Lamberson B, Tamrakar P, Kim EJ, Villari JL, Gill A, Tripathi SA, Karamchedu P, Paredes CJ, Rajgarhia V, Kotlar HK, Bailey RB, Miller DJ, Ohler NL, Swimmer C, Yoshikuni Y (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505:239–243

    Article  CAS  Google Scholar 

  12. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313

    Article  CAS  Google Scholar 

  13. Kim HT, Lee S, Kim KH, Choi I-G (2012) The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresour Technol 107:301–306

    Article  CAS  Google Scholar 

  14. Yun EJ, Choi I-G, Kim KH (2015) Red macroalgae as a sustainable resource for bio-based products. Trends Biotechnol 33:247–249

    Article  CAS  Google Scholar 

  15. Chandia NP, Matsuhiro B, Vasquez AE (2001) Alginic acids in Lessonia trabeculata: characterization by formic acid hydrolysis and FT-IR spectroscopy. Carbohydr Polym 46:81–87

    Article  CAS  Google Scholar 

  16. Holtan S, Zhang Q, Strand WI, Skjak-Braek G (2006) Characterization of the hydrolysis mechanism of polyalternating alginate in weak acid and assignment of the resulting MG-oligosaccharides by NMR spectroscopy and ESI–mass spectrometry. Biomacromolecules 7:2108–2121

    Article  CAS  Google Scholar 

  17. Haug A, Larsen B, Smidsrod O (1967) Alkaline degradation of alginate. Acta Chem Scand 21:2859–2870

    Article  CAS  Google Scholar 

  18. Niemela K, Sjostrom E (1985) Alkaline-degradation of alginates to carboxylic acids. Carbohydr Res 144:241–249

    Article  CAS  Google Scholar 

  19. Aida TM, Yamagata T, Watanabe M, Smith RL (2010) Depolymerization of sodium alginate under hydrothermal conditions. Carbohydr Polym 80:296–302

    Article  CAS  Google Scholar 

  20. Li X, Xu A, Xie H, Yu W, Xie W, Ma X (2010) Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue engineering. Carbohydr Polym 79:660–664

    Article  CAS  Google Scholar 

  21. Kim HT, Ko H-J, Kim N, Kim D, Lee D, Choi I-G, Woo HC, Kim MD, Kim KH (2012) Characterization of a recombinant endo-type alginate lyase (Alg7D) from Saccharophagus degradans. Biotechnol Lett 34:1087–1092

    Article  CAS  Google Scholar 

  22. Kim HT, Chung JH, Wang D, Lee J, Woo HC, Choi I-G, Kim KH (2012) Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40. Appl Microbiol Biotechnol 93:2233–2239

    Article  CAS  Google Scholar 

  23. Wang DM, Kim HT, Yun EJ, Kim DH, Park Y-C, Woo HC, Kim KH (2014) Optimal production of 4-deoxy-l-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases. Bioprocess Biosyst Eng 37:2105–2111

    Article  CAS  Google Scholar 

  24. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  25. Adams GA (1965) Complete acid hydrolysis. Methods Carbohydr Chem 5:269–280

    CAS  Google Scholar 

  26. Haug A, Larsen B, Smidsrod O (1966) A study of constitution of alginic acid by partial acid hydrolysis. Acta Chem Scand 20:183–190

    Article  CAS  Google Scholar 

  27. Holme HK, Lindmo K, Kristiansen A, Smidsrod O (2003) Thermal depolymerization of alginate in the solid state. Carbohydr Polym 54:431–438

    Article  CAS  Google Scholar 

  28. Jung YH, Kim IJ, Kim HK, Kim KH (2013) Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation. Bioresour Technol 132:109–114

    Article  CAS  Google Scholar 

  29. Kim HT, Yun EJ, Wang D, Chung JH, Choi I-G, Kim KH (2013) High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass. Bioresour Technol 136:582–587

    Article  CAS  Google Scholar 

  30. Preiss J, Ashwell G (1962) Alginic acid metabolism in bacteria. II. The enzymatic reduction of 4-deoxy-l-erythro-5-hexoseulose uronic acid to 2-keto-3-deoxy-d-gluconic acid. J Biol Chem 237:317–321

    CAS  Google Scholar 

  31. Hashimoto W, Miyake O, Momma K, Kawai S, Murata K (2000) Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate. J Bacteriol 182:4572–4577

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ministry of Trade, Industry and Energy (10052721). Experiments were performed at the Korea University Food Safety Hall for the Institute of Biomedical Science and Food Safety.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Heon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Yun, E.J., Kim, S. et al. Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae. Bioprocess Biosyst Eng 39, 959–966 (2016). https://doi.org/10.1007/s00449-016-1575-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1575-z

Keywords

Navigation