Skip to main content
Log in

Metabolic engineering of Corynebacterium glutamicum for increasing the production of l-ornithine by increasing NADPH availability

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

The experiments presented here were based on the conclusions of our previous proteomic analysis. Increasing the availability of glutamate by overexpression of the genes encoding enzymes in the l-ornithine biosynthesis pathway upstream of glutamate and disruption of speE, which encodes spermidine synthase, improved l-ornithine production by Corynebacterium glutamicum. Production of l-ornithine requires 2 moles of NADPH per mole of l-ornithine. Thus, the effect of NADPH availability on l-ornithine production was also investigated. Expression of Clostridium acetobutylicum gapC, which encodes NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, and Bacillus subtilis rocG, which encodes NAD-dependent glutamate dehydrogenase, led to an increase of l-ornithine concentration caused by greater availability of NADPH. Quantitative real-time PCR analysis demonstrates that the increased levels of NADPH resulted from the expression of the gapC or rocG gene rather than that of genes (gnd, icd, and ppnK) involved in NADPH biosynthesis. The resulting strain, C. glutamicum ΔAPRE::rocG, produced 14.84 g l−1 of l-ornithine. This strategy of overexpression of gapC and rocG will be useful for improving production of target compounds using NADPH as reducing equivalent within their synthetic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Belitsky BR, Sonenshein AL (1998) Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. J Bacteriol 180:6298–6305

    PubMed  CAS  Google Scholar 

  2. Chinard FP (1952) Photometric estimation of proline and ornithine. J Biol Chem 199:91–95

    PubMed  CAS  Google Scholar 

  3. Choi DK, Ryu WS, Choi CY, Park YH (1996) Production of l-ornithine by arginine auxotrophic mutants of Brevibacterium ketoglutamicum in dual substrate limited continuous culture. J Ferment Bioeng 81:216–219

    Article  CAS  Google Scholar 

  4. Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H (1994) Nucleotide sequence, expression, and transcription analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology 140:1817–1828

    Article  PubMed  CAS  Google Scholar 

  5. Huang MT, Wang Y, Liu JZ, Mao ZW (2011) Multiple strategies for metabolic engineering of Escherichia coli for efficient production of coenzyme Q10. Chin J Chem Eng 19:316–326

    Article  CAS  Google Scholar 

  6. Hwang G-H, Cho J-Y (2010) Identification of a suppressor gene for the arginine-auxotrophic argJ mutation in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 37:1131–1136

    Article  PubMed  CAS  Google Scholar 

  7. Hwang GH, Cho JY (2012) Implication of gluconate kinase activity in l-ornithine biosynthesis in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 39:1869–1874

    Article  PubMed  CAS  Google Scholar 

  8. Hwang JH, Hwang GH, Cho JY (2008) Effect of increased glutamate availability on l-ornithine production in Corynebacterium glutamicum. J Microbiol Biotechnol 18:704–710

    PubMed  CAS  Google Scholar 

  9. Inui M, Kawaguchi H, Murakami S, Vertès AA, Yukawa H (2004) Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254

    Article  PubMed  Google Scholar 

  10. Kabus A, Georgi T, Wendisch VF, Michael B (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine formation. Appl Microbiol Biotechnol 75:47–53

    Article  PubMed  CAS  Google Scholar 

  11. Kholy ER, Eikmanns BJ, Gutmann M, Sahm H (1993) Glutamate dehydrogenase is not essential for glutamate formation by Corynebacterium glutamicum. Appl Environ Microbiol 59:2329–2331

    PubMed  CAS  Google Scholar 

  12. Kinoshita S, Nakayama K, Udaka S (1957) The fermentative production of l-ornithine. J Gen Appl Microbiol 3:276–277

    Article  CAS  Google Scholar 

  13. Kirchner O, Tauch A (2003) Tools for genetic engineering in the amino acid-producing bacterium Corynebacterium glutamicum. J Biotechnol 104:287–299

    Article  PubMed  CAS  Google Scholar 

  14. Lee HC, Kim JS, Jang W, Kim SY (2010) High NADPH/NADP ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol 149:24–32

    Article  PubMed  CAS  Google Scholar 

  15. Lee HW, Yoon SJ, Jang HW, Kim CS, Kim TH, Ryu WS, Jung JK, Park YH (2000) Effects of mixing on fed-batch fermentation of l-ornithine. J Biosci Bioeng 89:539–544

    Article  PubMed  CAS  Google Scholar 

  16. Lee SY, Cho JY, Lee HJ, Kim YH, Min J (2010) Enhancement of ornithine production in proline-supplemented Corynebacterium glutamicum by ornithine cyclodeaminase. J Microbiol Biotechnol 20:127–131

    PubMed  CAS  Google Scholar 

  17. Lee SY, Kim YH, Min J (2009) The effect of ArgR-DNA binding affinity on ornithine production in Corynebacterium glutamicum. Curr Microbiol 59:483–488

    Article  PubMed  CAS  Google Scholar 

  18. Lee YJ, Cho JY (2006) Genetic manipulation of a primary metabolic pathway for l-ornithine production in Escherichia coli. Biotechnol Lett 28:1849–1856

    Article  PubMed  CAS  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  20. Lu DM, Jiang L-Y, Chen L-A, Liu J-Z, Mao Z-W (2011) Optimization of fermentation conditions of the engineered Corynebacterium glutamicum to enhance l-ornithine production by response surface methodology. J Biotechnol Biomater 1:116. doi:10.4172/2155-952X.1000116,15

    CAS  Google Scholar 

  21. Lu DM, Liu JZ, Mao ZW (2012) Engineering of Corynebacterium glutamicum to enhance l-ornithine production by gene knockout and comparative proteomic analysis. Chin J Chem Eng 20:731–739

    Article  CAS  Google Scholar 

  22. Martínez A, Zhu J, Lin H, Bennett GN, San KY (2008) Replacing Escherichia coli NAD-dependent glyceraldehydes 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng 10:352–359

    Article  PubMed  Google Scholar 

  23. Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri M, Wendisch VF (2012) Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production lysine, glutamate, ornithine and putrescine. Microb Biotechnol 6:131–140

    Article  Google Scholar 

  24. Salvatore F, Cimino F, Maria C, Cittadini D (1964) Mechanism of the protection by l-ornithine-l-aspartate mixture and by l-arginine in ammonia intoxication. Arch Biochem Biophys 107:499–503

    Article  PubMed  CAS  Google Scholar 

  25. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  26. Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154:191–198

    Article  PubMed  CAS  Google Scholar 

  27. Shi A, Zhu X, Lu J, Zhang X, Ma Y (2013) Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng 16:1–10

    Article  PubMed  CAS  Google Scholar 

  28. Shi HP, Fishel RS, Efron DT, Williams JZ, Fishel MH, Barbul A (2002) Effect of supplemental ornithine on wound healing. J Surg Res 106:299–302

    Article  PubMed  CAS  Google Scholar 

  29. Shirai T, Fujimura K, Furusawa C, Nagahisa K, Shioya S, Shimizu H (2007) Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microb Cell Fact 6:19

    Article  PubMed  Google Scholar 

  30. Takeno S, Murata R, Kobayashi R, Mitsuhashi S, Ikeda M (2010) Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for l-lysine production. Appl Environ Microbiol 76:7154–7160

    Article  PubMed  CAS  Google Scholar 

  31. Van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52:541–545

    Article  PubMed  Google Scholar 

  32. Xu D, Tan Y, Shi F, Wang X (2010) An improved shuttle vector constructed for metabolic engineering research in Corynebacterium glutamicum. Plasmid 64:85–91

    Article  PubMed  CAS  Google Scholar 

  33. Zajac A, Poprzecki S, Zebrowska A, Chalimoniuk M, Langfort J (2010) Arginine and ornithine supplementation increases growth hormone and insulin-like growth factor-1 serum levels after heavy-resistance exercise in strength-trained athletes. J Strength Cond Res 24:1082–1090

    Article  PubMed  Google Scholar 

  34. Zhang JF, Wang JB, Huang JM, Zhang J (2009) Breeding of high-yield l-ornithine-producing strain by protoplast fusion. Amino acids Biotic Resour 31:53–57

    Google Scholar 

Download references

Acknowledgments

We are grateful to the National Natural Science Foundation of China (grant nos. 30970089, 20876181, 21276289) and the Natural Science Foundation of Guangdong Province (nos. 9351027501000003, S2011010001396) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Zhong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, LY., Zhang, YY., Li, Z. et al. Metabolic engineering of Corynebacterium glutamicum for increasing the production of l-ornithine by increasing NADPH availability. J Ind Microbiol Biotechnol 40, 1143–1151 (2013). https://doi.org/10.1007/s10295-013-1306-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-013-1306-2

Keywords

Navigation