Skip to main content

Advertisement

Log in

Astrocytes Surviving Severe Stress Can Still Protect Neighboring Neurons from Proteotoxic Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Astrocytes are one of the major cell types to combat cellular stress and protect neighboring neurons from injury. In order to fulfill this important role, astrocytes must sense and respond to toxic stimuli, perhaps including stimuli that are severely stressful and kill some of the astrocytes. The present study demonstrates that primary astrocytes that managed to survive severe proteotoxic stress were protected against subsequent challenges. These findings suggest that the phenomenon of preconditioning or tolerance can be extended from mild to severe stress for this cell type. Astrocytic stress adaptation lasted at least 96 h, the longest interval tested. Heat shock protein 70 (Hsp70) was raised in stressed astrocytes, but inhibition of neither Hsp70 nor Hsp32 activity abolished their resistance against a second proteotoxic challenge. Only inhibition of glutathione synthesis abolished astrocytic stress adaptation, consistent with our previous report. Primary neurons were plated upon previously stressed astrocytes, and the cocultures were then exposed to another proteotoxic challenge. Severely stressed astrocytes were still able to protect neighboring neurons against this injury, and the protection was unexpectedly independent of glutathione synthesis. Stressed astrocytes were even able to protect neurons after simultaneous application of proteasome and Hsp70 inhibitors, which otherwise elicited synergistic, severe loss of neurons when applied together. Astrocyte-induced neuroprotection against proteotoxicity was not elicited with astrocyte-conditioned media, suggesting that physical cell-to-cell contacts may be essential. These findings suggest that astrocytes may adapt to severe stress so that they can continue to protect neighboring cell types from profound injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Trendelenburg G, Dirnagl U (2005) Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia 50(4):307–20

    Article  PubMed  Google Scholar 

  2. Gao C, Wang C, Liu B, Wu H, Yang Q, Jin J, Li H, Dong S et al (2014) Intermittent hypoxia preconditioning-induced epileptic tolerance by upregulation of monocarboxylate transporter 4 expression in rat hippocampal astrocytes. Neurochem Res 39(11):2160–9

    Article  CAS  PubMed  Google Scholar 

  3. Rajapakse N, Kis B, Horiguchi T, Snipes J, Busija D (2003) Diazoxide pretreatment induces delayed preconditioning in astrocytes against oxygen glucose deprivation and hydrogen peroxide-induced toxicity. J Neurosci Res 73(2):206–14

    Article  CAS  PubMed  Google Scholar 

  4. Calabrese EJ (2008) Astrocytes: adaptive responses to low doses of neurotoxins. Crit Rev Toxicol 38(5):463–71

    Article  CAS  PubMed  Google Scholar 

  5. Chu PW, Beart PM, Jones NM (2010) Preconditioning protects against oxidative injury involving hypoxia-inducible factor-1 and vascular endothelial growth factor in cultured astrocytes. Eur J Pharmacol 633(1–3):24–32

    Article  CAS  PubMed  Google Scholar 

  6. Du F, Zhu L, Qian ZM, Wu XM, Yung WH, Ke Y (2010) Hyperthermic preconditioning protects astrocytes from ischemia/reperfusion injury by up-regulation of HIF-1 alpha expression and binding activity. Biochim Biophys Acta 1802(11):1048–53

    Article  CAS  PubMed  Google Scholar 

  7. Du F, Qian ZM, Zhu L, Wu XM, Yung WH, Ke Y (2011) A synergistic role of hyperthermic and pharmacological preconditioning to protect astrocytes against ischemia/reperfusion injury. Neurochem Res 36(2):312–8

    Article  CAS  PubMed  Google Scholar 

  8. Johnsen D, Murphy SJ (2011) Isoflurane preconditioning protects astrocytes from oxygen and glucose deprivation independent of innate cell sex. J Neurosurg Anesthesiol 23(4):335–40

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nikiforou M, Vlassaks E, Strackx E, Kramer BW, Vles JS, Gavilanes AW (2015) Preconditioning by oxygen-glucose deprivation preserves cell proliferation and reduces cytotoxicity in primary astrocyte cultures. CNS Neurol Disord Drug Targets 14(1):61–7

    Article  CAS  PubMed  Google Scholar 

  10. Hirayama Y, Ikeda-Matsuo Y, Notomi S, Enaida H, Kinouchi H, Koizumi S (2015) Astrocyte-mediated ischemic tolerance. J Neurosci 35(9):3794–3805

    Article  CAS  PubMed  Google Scholar 

  11. Titler AM, Posimo JM, Leak RK (2013) Astrocyte plasticity revealed by adaptations to severe proteotoxic stress. Cell Tissue Res 352(3):427–43

    Article  PubMed  Google Scholar 

  12. Perea G, Sur M, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8:378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Allen NJ (2014) Astrocyte regulation of synaptic behavior. Annu Rev Cell Dev Biol 30:439–63

    Article  CAS  PubMed  Google Scholar 

  14. Jansen AH, Reits EA, Hol EM (2014) The ubiquitin proteasome system in glia and its role in neurodegenerative diseases. Front Mol Neurosci 7:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Avila-Munoz E, Arias C (2014) When astrocytes become harmful: functional and inflammatory responses that contribute to Alzheimer’s disease. Ageing Res Rev 18C:29–40

    Article  CAS  Google Scholar 

  16. Jain P, Wadhwa PK, Jadhav HR (2015) Reactive astrogliosis: role in Alzheimer’s disease. CNS Neurol Disord Drug Targets 14(7):872–9

    Article  CAS  PubMed  Google Scholar 

  17. Verkhratsky A, Parpura V (2015) Astrogliopathology in neurological, neurodevelopmental and psychiatric disorders. Neurobiol Dis

  18. Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–8

    Article  CAS  PubMed  Google Scholar 

  19. Fu W, Jhamandas JH (2014) Role of astrocytic glycolytic metabolism in Alzheimer’s disease pathogenesis. Biogerontology 15(6):579–86

    Article  CAS  PubMed  Google Scholar 

  20. Xilouri M, Stefanis L (2010) Autophagy in the central nervous system: implications for neurodegenerative disorders. CNS Neurol Disord Drug Targets 9(6):701–19

    Article  CAS  PubMed  Google Scholar 

  21. Angot E, Steiner JA, Hansen C, Li JY, Brundin P (2010) Are synucleinopathies prion-like disorders? Lancet Neurol 9(11):1128–38

    Article  PubMed  Google Scholar 

  22. Jellinger KA (2009) Recent advances in our understanding of neurodegeneration. J Neural Transm 116(9):1111–62

    Article  CAS  PubMed  Google Scholar 

  23. Dickson DW (2009) Neuropathology of non-Alzheimer degenerative disorders. Int J Clin Exp Pathol 3(1):1–23

    PubMed  Google Scholar 

  24. Uversky VN (2009) Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci: J Virtual Libr 14:5188–238

    Article  CAS  Google Scholar 

  25. Menzies FM, Ravikumar B, Rubinsztein DC (2006) Protective roles for induction of autophagy in multiple proteinopathies. Autophagy 2(3):224–5

    Article  CAS  PubMed  Google Scholar 

  26. Walker LC, Levine H 3rd, Mattson MP, Jucker M (2006) Inducible proteopathies. Trends Neurosci 29(8):438–43

    Article  CAS  PubMed  Google Scholar 

  27. Walker LC, LeVine H (2000) The cerebral proteopathies: neurodegenerative disorders of protein conformation and assembly. Mol Neurobiol 21(1–2):83–95

    Article  CAS  PubMed  Google Scholar 

  28. Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22(11):1427–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gundersen V (2010) Protein aggregation in Parkinson’s disease. Acta Neurol Scand 122(Supplementum 190):82–7

    Article  Google Scholar 

  30. McNaught KS, Belizaire R, Isacson O, Jenner P, Olanow CW (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179(1):38–46

    Article  CAS  PubMed  Google Scholar 

  31. McNaught KS (2004) Proteolytic dysfunction in neurodegenerative disorders. Int Rev Neurobiol 62:95–119

    Article  PubMed  Google Scholar 

  32. Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75(1):436–9

    Article  CAS  PubMed  Google Scholar 

  33. Rideout HJ, Larsen KE, Sulzer D, Stefanis L (2001) Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells. J Neurochem 78(4):899–908

    Article  CAS  PubMed  Google Scholar 

  34. Rideout HJ, Stefanis L (2002) Proteasomal inhibition-induced inclusion formation and death in cortical neurons require transcription and ubiquitination. Mol Cell Neurosci 21(2):223–38

    Article  CAS  PubMed  Google Scholar 

  35. Rideout HJ, Lang-Rollin IC, Savalle M, Stefanis L (2005) Dopaminergic neurons in rat ventral midbrain cultures undergo selective apoptosis and form inclusions, but do not up-regulate iHSP70, following proteasomal inhibition. J Neurochem 93(5):1304–13

    Article  CAS  PubMed  Google Scholar 

  36. Sawada H, Kohno R, Kihara T, Izumi Y, Sakka N, Ibi M, Nakanishi M, Nakamizo T et al (2004) Proteasome mediates dopaminergic neuronal degeneration, and its inhibition causes alpha-synuclein inclusions. J Biol Chem 279(11):10710–9

    Article  CAS  PubMed  Google Scholar 

  37. Sun F, Anantharam V, Zhang D, Latchoumycandane C, Kanthasamy A, Kanthasamy AG (2006) Proteasome inhibitor MG-132 induces dopaminergic degeneration in cell culture and animal models. Neurotoxicology 27(5):807–15

    Article  CAS  PubMed  Google Scholar 

  38. Xie W, Li X, Li C, Zhu W, Jankovic J, Le W (2010) Proteasome inhibition modeling nigral neuron degeneration in Parkinson’s disease. J Neurochem 115(1):188–99

    Article  CAS  PubMed  Google Scholar 

  39. Schultz C, Ghebremedhin E, Del Tredici K, Rub U, Braak H (2004) High prevalence of thorn-shaped astrocytes in the aged human medial temporal lobe. Neurobiol Aging 25(3):397–405

    Article  PubMed  Google Scholar 

  40. Rub U, Del Tredici K, Schultz C, de Vos RA, Jansen Steur EN, Arai K, Braak H (2002) Progressive supranuclear palsy: neuronal and glial cytoskeletal pathology in the higher order processing autonomic nuclei of the lower brainstem. Neuropathol Appl Neurobiol 28(1):12–22

    Article  CAS  PubMed  Google Scholar 

  41. Schultz C, Hubbard GB, Rub U, Braak E, Braak H (2000) Age-related progression of tau pathology in brains of baboons. Neurobiol Aging 21(6):905–12

    Article  CAS  PubMed  Google Scholar 

  42. Schultz C, Dehghani F, Hubbard GB, Thal DR, Struckhoff G, Braak E, Braak H (2000) Filamentous tau pathology in nerve cells, astrocytes, and oligodendrocytes of aged baboons. J Neuropathol Exp Neurol 59(1):39–52

    Article  CAS  PubMed  Google Scholar 

  43. Braak H, Sastre M, Del Tredici K (2007) Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathol 114(3):231–41

    Article  CAS  PubMed  Google Scholar 

  44. Willwohl D, Kettner M, Braak H, Hubbard GB, Dick EJ Jr, Cox AB, Schultz C (2002) Pallido-nigral spheroids in nonhuman primates: accumulation of heat shock proteins in astroglial processes. Acta Neuropathol (Berl) 103(3):276–80

    Article  CAS  Google Scholar 

  45. Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H (2000) NACP/alpha-synuclein-positive filamentous inclusions in astrocytes and oligodendrocytes of Parkinson’s disease brains. Acta Neuropathol 99(1):14–20

    Article  CAS  PubMed  Google Scholar 

  46. Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E et al (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285(12):9262–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9(4):453–7

    Article  CAS  PubMed  Google Scholar 

  48. Thal DR, Schultz C, Dehghani F, Yamaguchi H, Braak H, Braak E (2000) Amyloid beta-protein (Abeta)-containing astrocytes are located preferentially near N-terminal-truncated Abeta deposits in the human entorhinal cortex. Acta Neuropathol 100(6):608–17

    Article  CAS  PubMed  Google Scholar 

  49. Akiyama H, Mori H, Saido T, Kondo H, Ikeda K, McGeer PL (1999) Occurrence of the diffuse amyloid beta-protein (Abeta) deposits with numerous Abeta-containing glial cells in the cerebral cortex of patients with Alzheimer’s disease. Glia 25(4):324–31

    Article  CAS  PubMed  Google Scholar 

  50. Akiyama H, Schwab C, Kondo H, Mori H, Kametani F, Ikeda K, McGeer PL (1996) Granules in glial cells of patients with Alzheimer’s disease are immunopositive for C-terminal sequences of beta-amyloid protein. Neurosci Lett 206(2–3):169–72

    Article  CAS  PubMed  Google Scholar 

  51. Duyckaerts C, Delatour B, Potier MC (2009) Classification and basic pathology of Alzheimer disease. Acta Neuropathol 118(1):5–36

    Article  CAS  PubMed  Google Scholar 

  52. Yang W, Sopper MM, Leystra-Lantz C, Strong MJ (2003) Microtubule-associated tau protein positive neuronal and glial inclusions in ALS. Neurology 61(12):1766–73

    Article  CAS  PubMed  Google Scholar 

  53. Yang W, Strong MJ (2012) Widespread neuronal and glial hyperphosphorylated tau deposition in ALS with cognitive impairment. Amyotroph Lateral Scler: Off Publ World Fed Neurol Res Group Motor Neuron Dis 13(2):178–93

    Article  CAS  Google Scholar 

  54. Yokota O, Tsuchiya K, Oda T, Ishihara T, de Silva R, Lees AJ, Arai T, Uchihara T et al (2006) Amyotrophic lateral sclerosis with dementia: an autopsy case showing many Bunina bodies, tau-positive neuronal and astrocytic plaque-like pathologies, and pallido-nigral degeneration. Acta Neuropathol 112(5):633–45

    Article  PubMed  Google Scholar 

  55. Komori T (1999) Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick’s disease. Brain Pathol 9(4):663–79

    Article  CAS  PubMed  Google Scholar 

  56. Yang W, Ang LC, Strong MJ (2005) Tau protein aggregation in the frontal and entorhinal cortices as a function of aging. Brain Res Dev Brain Res 156(2):127–38

    Article  CAS  PubMed  Google Scholar 

  57. Ding Q, Dimayuga E, Martin S, Bruce-Keller AJ, Nukala V, Cuervo AM, Keller JN (2003) Characterization of chronic low-level proteasome inhibition on neural homeostasis. J Neurochem 86(2):489–97

    Article  CAS  PubMed  Google Scholar 

  58. Leak RK, Zigmond MJ, Liou AK (2008) Adaptation to chronic MG132 reduces oxidative toxicity by a CuZnSOD-dependent mechanism. J Neurochem 106(2):860–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Grune T, Catalgol B, Licht A, Ermak G, Pickering AM, Ngo JK, Davies KJ (2011) HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radic Biol Med 51(7):1355–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bayer SA, Altman J (1991) Neocortical development. Raven Press. xiv, New York, p 255

    Google Scholar 

  61. Miller FD, Gauthier AS (2007) Timing is everything: making neurons versus glia in the developing cortex. Neuron 54(3):357–69

    Article  CAS  PubMed  Google Scholar 

  62. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85(3):890–902

    Article  CAS  PubMed  Google Scholar 

  63. Posimo JM, Titler AM, Choi HJ, Unnithan AS, Leak RK (2013) Neocortex and allocortex respond differentially to cellular stress in vitro and aging in vivo. PLoS One 8(3), e58596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Posimo JM, Weilnau JN, Gleixner AM, Broeren MT, Weiland NL, Brodsky JL, Wipf P, Leak RK (2015) Heat shock protein defenses in the neocortex and allocortex of the telencephalon. Neurobiol Aging 36(5):1924–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leak RK, Castro SL, Jaumotte JD, Smith AD, Zigmond MJ (2010) Assaying multiple biochemical variables from the same tissue sample. J Neurosci Methods 191(2):234–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Posimo JM, Unnithan AS, Gleixner AM, Choi HJ, Jiang Y, Pulugulla SH, Leak RK (2014) Viability assays for cells in culture. J Visualized Exp: JoVE 83(83), e50645

    PubMed  Google Scholar 

  67. Unnithan AS, Jiang Y, Rumble JL, Pulugulla SH, Posimo JM, Gleixner AM, Leak RK (2014) N-acetyl cysteine prevents synergistic, severe toxicity from two hits of oxidative stress. Neurosci Lett 560:71–6

    Article  CAS  PubMed  Google Scholar 

  68. Unnithan AS, Choi HJ, Titler AM, Posimo JM, Leak RK (2012) Rescue from a two hit, high-throughput model of neurodegeneration with N-acetyl cysteine. Neurochem Int 61(3):356–368

    Article  CAS  PubMed  Google Scholar 

  69. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268(5211):726–31

    Article  CAS  PubMed  Google Scholar 

  70. Kisselev AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 8(8):739–58

    Article  CAS  PubMed  Google Scholar 

  71. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501

    Article  CAS  PubMed  Google Scholar 

  72. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Guo S, Wharton W, Moseley P, Shi H (2007) Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones 12(3):245–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Owen JB, Butterfield DA (2010) Measurement of oxidized/reduced glutathione ratio. Methods Mol Biol 648:269–77

    Article  CAS  PubMed  Google Scholar 

  76. Franklin CC, Backos DS, Mohar I, White CC, Forman HJ, Kavanagh TJ (2009) Structure, function, and post-translational regulation of the catalytic and modifier subunits of glutamate cysteine ligase. Mol Aspects Med 30(1–2):86–98

    Article  CAS  PubMed  Google Scholar 

  77. Mazzetti AP, Fiorile MC, Primavera A, Lo Bello M (2015) Glutathione transferases and neurodegenerative diseases. Neurochem Int 82:10–8

    Article  CAS  PubMed  Google Scholar 

  78. Johnson JA, el Barbary A, Kornguth SE, Brugge JF, Siegel FL (1993) Glutathione S-transferase isoenzymes in rat brain neurons and glia. J Neurosci 13(5):2013–23

    CAS  PubMed  Google Scholar 

  79. Cammer W, Zhang H (1993) Atypical localization of the oligodendrocytic isoform (PI) of glutathione-S-transferase in astrocytes during cuprizone intoxication. J Neurosci Res 36(2):183–90

    Article  CAS  PubMed  Google Scholar 

  80. Abramovitz M, Homma H, Ishigaki S, Tansey F, Cammer W, Listowsky I (1988) Characterization and localization of glutathione-S-transferases in rat brain and binding of hormones, neurotransmitters, and drugs. J Neurochem 50(1):50–7

    Article  CAS  PubMed  Google Scholar 

  81. Lu SC (2009) Regulation of glutathione synthesis. Mol Aspects Med 30(1–2):42–59

    Article  CAS  PubMed  Google Scholar 

  82. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–77

    Article  CAS  PubMed  Google Scholar 

  83. Morimoto RI, Santoro MG (1998) Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol 16(9):833–8

    Article  CAS  PubMed  Google Scholar 

  84. Lancaster GI, Febbraio MA (2005) Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J Biol Chem 280(24):23349–55

    Article  CAS  PubMed  Google Scholar 

  85. Zhan R, Leng X, Liu X, Wang X, Gong J, Yan L, Wang L, Wang Y et al (2009) Heat shock protein 70 is secreted from endothelial cells by a non-classical pathway involving exosomes. Biochem Biophys Res Commun 387(2):229–33

    Article  CAS  PubMed  Google Scholar 

  86. Crum TS, Gleixner AM, Posimo JM, Mason DM, Broeren MT, Heinemann SD, Wipf P, Brodsky JL et al (2015) Heat shock protein responses to aging and proteotoxicity in the olfactory bulb. J Neurochem 133(6):780–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Boger HA, Granholm AC, McGinty JF, Middaugh LD (2010) A dual-hit animal model for age-related parkinsonism. Prog Neurobiol 90(2):217–29

    Article  CAS  PubMed  Google Scholar 

  88. Cory-Slechta DA, Thiruchelvam M, Barlow BK, Richfield EK (2005) Developmental pesticide models of the Parkinson disease phenotype. Environ Health Perspect 113(9):1263–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu X, Lee HG, Perry G, Smith MA (2007) Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta 1772(4):494–502

    Article  CAS  PubMed  Google Scholar 

  90. Carvey PM, Punati A, Newman MB (2006) Progressive dopamine neuron loss in Parkinson’s disease: the multiple hit hypothesis. Cell Transplant 15(3):239–50

    Article  PubMed  Google Scholar 

  91. Gao HM, Hong JS (2011) Gene-environment interactions: key to unraveling the mystery of Parkinson’s disease. Prog Neurobiol 94(1):1–19

    Article  PubMed  PubMed Central  Google Scholar 

  92. Weidong L, Shen C, Jankovic J (2009) Etiopathogenesis of Parkinson disease: a new beginning? Neuroscientist: Rev J Bringing Neurobiol Neurol Psychiatr 15(1):28–35

    Article  Google Scholar 

  93. Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 30(5):244–50

    Article  CAS  PubMed  Google Scholar 

  94. Manning-Bog AB, Langston JW (2007) Model fusion, the next phase in developing animal models for Parkinson’s disease. Neurotox Res 11(3–4):219–40

    Article  CAS  PubMed  Google Scholar 

  95. Leak RK (2014) Adaptation and sensitization to proteotoxic stress. Dose–response: Publ Int Hormesis Soc 12(1):24–56

    Article  Google Scholar 

  96. Seidel K, Vinet J, Dunnen WF, Brunt ER, Meister M, Boncoraglio A, Zijlstra MP, Boddeke HW et al (2012) The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases. Neuropathol Appl Neurobiol 38(1):39–53

    Article  CAS  PubMed  Google Scholar 

  97. Wilhelmus MM, Otte-Holler I, Wesseling P, de Waal RM, Boelens WC, Verbeek MM (2006) Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer’s disease brains. Neuropathol Appl Neurobiol 32(2):119–30

    Article  CAS  PubMed  Google Scholar 

  98. Dabir DV, Trojanowski JQ, Richter-Landsberg C, Lee VM, Forman MS (2004) Expression of the small heat-shock protein alphaB-crystallin in tauopathies with glial pathology. Am J Pathol 164(1):155–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Renkawek K, Stege GJ, Bosman GJ (1999) Dementia, gliosis and expression of the small heat shock proteins hsp27 and alpha B-crystallin in Parkinson’s disease. Neuroreport 10(11):2273–6

    Article  CAS  PubMed  Google Scholar 

  100. Renkawek K, Bosman GJ, Gaestel M (1993) Increased expression of heat-shock protein 27 kDa in Alzheimer disease: a preliminary study. Neuroreport 5(1):14–6

    Article  CAS  PubMed  Google Scholar 

  101. Shinohara H, Inaguma Y, Goto S, Inagaki T, Kato K (1993) Alpha B crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer’s disease. J Neurol Sci 119(2):203–8

    Article  CAS  PubMed  Google Scholar 

  102. Renkawek K, Bosman GJ, de Jong WW (1994) Expression of small heat-shock protein hsp 27 in reactive gliosis in Alzheimer disease and other types of dementia. Acta Neuropathol 87(5):511–9

    Article  CAS  PubMed  Google Scholar 

  103. Renkawek K, Voorter CE, Bosman GJ, van Workum FP, de Jong WW (1994) Expression of alpha B-crystallin in Alzheimer’s disease. Acta Neuropathol 87(2):155–60

    Article  CAS  PubMed  Google Scholar 

  104. Durrenberger PF, Filiou MD, Moran LB, Michael GJ, Novoselov S, Cheetham ME, Clark P, Pearce RK et al (2009) DnaJB6 is present in the core of Lewy bodies and is highly up-regulated in parkinsonian astrocytes. J Neurosci Res 87(1):238–45

    Article  CAS  PubMed  Google Scholar 

  105. Kawamoto Y, Akiguchi I, Shirakashi Y, Honjo Y, Tomimoto H, Takahashi R, Budka H (2007) Accumulation of Hsc70 and Hsp70 in glial cytoplasmic inclusions in patients with multiple system atrophy. Brain Res Brain Res Protoc 1136(1):219–27

    CAS  Google Scholar 

  106. Lowe J, McDermott H, Pike I, Spendlove I, Landon M, Mayer RJ (1992) alpha B crystallin expression in non-lenticular tissues and selective presence in ubiquitinated inclusion bodies in human disease. J Pathol 166(1):61–8

    Article  CAS  PubMed  Google Scholar 

  107. Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142(2):128–30

    Article  CAS  PubMed  Google Scholar 

  108. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F, Jenner P, Marsden CD (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36(3):348–55

    Article  CAS  PubMed  Google Scholar 

  109. Fitzmaurice PS, Ang L, Guttman M, Rajput AH, Furukawa Y, Kish SJ (2003) Nigral glutathione deficiency is not specific for idiopathic Parkinson’s disease. Mov Disord 18(9):969–76

    Article  PubMed  Google Scholar 

  110. Pearce RK, Owen A, Daniel S, Jenner P, Marsden CD (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 104(6–7):661–77

    Article  CAS  PubMed  Google Scholar 

  111. Mythri RB, Venkateshappa C, Harish G, Mahadevan A, Muthane UB, Yasha TC, Srinivas Bharath MM, Shankar SK (2011) Evaluation of markers of oxidative stress, antioxidant function and astrocytic proliferation in the striatum and frontal cortex of Parkinson’s disease brains. Neurochem Res 36(8):1452–63

    Article  CAS  PubMed  Google Scholar 

  112. Saharan S, Mandal PK (2014) The emerging role of glutathione in Alzheimer’s disease. J Alzheimers Dis 40(3):519–29

    CAS  PubMed  Google Scholar 

  113. Johnson WM, Wilson-Delfosse AL, Mieyal JJ (2012) Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4(10):1399–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Adams JD Jr, Klaidman LK, Odunze IN, Shen HC, Miller CA (1991) Alzheimer’s and Parkinson’s disease. Brain levels of glutathione, glutathione disulfide, and vitamin E. Mol Chem Neuropathol 14(3):213–26

    Article  CAS  PubMed  Google Scholar 

  115. Makar TK, Cooper AJ, Tofel-Grehl B, Thaler HT, Blass JP (1995) Carnitine, carnitine acetyltransferase, and glutathione in Alzheimer brain. Neurochem Res 20(6):705–11

    Article  CAS  PubMed  Google Scholar 

  116. Sian J, Dexter DT, Lees AJ, Daniel S, Jenner P, Marsden CD (1994) Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 36(3):356–61

    Article  CAS  PubMed  Google Scholar 

  117. Liu H, Harrell LE, Shenvi S, Hagen T, Liu RM (2005) Gender differences in glutathione metabolism in Alzheimer’s disease. J Neurosci Res 79(6):861–7

    Article  CAS  PubMed  Google Scholar 

  118. Deng Y, Newman B, Dunne MP, Silburn PA, Mellick GD (2004) Case-only study of interactions between genetic polymorphisms of GSTM1, P1, T1 and Z1 and smoking in Parkinson’s disease. Neurosci Lett 366(3):326–31

    Article  CAS  PubMed  Google Scholar 

  119. Smeyne M, Boyd J, Raviie Shepherd K, Jiao Y, Pond BB, Hatler M, Wolf R, Henderson C et al (2007) GSTpi expression mediates dopaminergic neuron sensitivity in experimental parkinsonism. Proc Natl Acad Sci U S A 104(6):1977–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ahmadi A, Fredrikson M, Jerregard H, Akerback A, Fall PA, Rannug A, Axelson O, Soderkvist P (2000) GSTM1 and mEPHX polymorphisms in Parkinson’s disease and age of onset. Biochem Biophys Res Commun 269(3):676–80

    Article  CAS  PubMed  Google Scholar 

  121. Piacentini S, Polimanti R, Squitti R, Ventriglia M, Cassetta E, Vernieri F, Rossini PM, Manfellotto D et al (2012) GSTM1 null genotype as risk factor for late-onset Alzheimer’s disease in Italian patients. J Neurol Sci 317(1–2):137–40

    Article  CAS  PubMed  Google Scholar 

  122. Pocernich CB, Butterfield DA (2012) Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Biochim Biophys Acta 1822(5):625–30

    Article  CAS  PubMed  Google Scholar 

  123. Braidy N, Zarka M, Welch J, Bridge W (2015) Therapeutic approaches to modulating glutathione levels as a pharmacological strategy in Alzheimer’s disease. Curr Alzheimer Res 12(4):298–313

    Article  CAS  PubMed  Google Scholar 

  124. Bavarsad Shahripour R, Harrigan MR, Alexandrov AV (2014) N-acetylcysteine (NAC) in neurological disorders: mechanisms of action and therapeutic opportunities. Brain Behav 4(2):108–22

    Article  PubMed  PubMed Central  Google Scholar 

  125. Craiu A, Gaczynska M, Akopian T, Gramm CF, Fenteany G, Goldberg AL, Rock KL (1997) Lactacystin and clasto-lactacystin beta-lactone modify multiple proteasome beta-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation. J Biol Chem 272(20):13437–45

    Article  CAS  PubMed  Google Scholar 

  126. Alexandrova A, Petrov L, Georgieva A, Kirkova M, Kukan M (2008) Effects of proteasome inhibitor, MG132, on proteasome activity and oxidative status of rat liver. Cell Biochem Funct 26(3):392–8

    Article  CAS  PubMed  Google Scholar 

  127. Braun HA, Umbreen S, Groll M, Kuckelkorn U, Mlynarczuk I, Wigand ME, Drung I, Kloetzel PM et al (2005) Tripeptide mimetics inhibit the 20 S proteasome by covalent bonding to the active threonines. J Biol Chem 280(31):28394–401

    Article  CAS  PubMed  Google Scholar 

  128. MacGurn JA, Hsu PC, Emr SD (2012) Ubiquitin and membrane protein turnover: from cradle to grave. Annu Rev Biochem 81:231–59

    Article  CAS  PubMed  Google Scholar 

  129. Schreiner B, Romanelli E, Liberski P, Ingold-Heppner B, Sobottka-Brillout B, Hartwig T, Chandrasekar V, Johannssen H et al (2015) Astrocyte depletion impairs redox homeostasis and triggers neuronal loss in the adult CNS. Cell Rep 12(9):1377–84

    Article  CAS  PubMed  Google Scholar 

  130. Rosenberg PA, Aizenman E (1989) Hundred-fold increase in neuronal vulnerability to glutamate toxicity in astrocyte-poor cultures of rat cerebral cortex. Neurosci Lett 103(2):162–8

    Article  CAS  PubMed  Google Scholar 

  131. Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267(16):4912–6

    Article  CAS  PubMed  Google Scholar 

  132. Wilson JX (1997) Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 75(10–11):1149–63

    Article  CAS  PubMed  Google Scholar 

  133. Rathinam ML, Watts LT, Narasimhan M, Riar AK, Mahimainathan L, Henderson GI (2012) Astrocyte mediated protection of fetal cerebral cortical neurons from rotenone and paraquat. Environ Toxicol Pharmacol 33(2):353–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mullett SJ, Di Maio R, Greenamyre JT, Hinkle DA (2013) DJ-1 expression modulates astrocyte-mediated protection against neuronal oxidative stress. J Mol Neurosci 49(3):507–11

    Article  CAS  PubMed  Google Scholar 

  135. Mullett SJ, Hinkle DA (2009) DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone. Neurobiol Dis 33(1):28–36

    Article  PubMed  Google Scholar 

  136. Mullett SJ, Hinkle DA (2011) DJ-1 deficiency in astrocytes selectively enhances mitochondrial complex I inhibitor-induced neurotoxicity. J Neurochem 117(3):375–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cipriani S, Desjardins CA, Burdett TC, Xu Y, Xu K, Schwarzschild MA (2012) Protection of dopaminergic cells by urate requires its accumulation in astrocytes. J Neurochem 123(1):172–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Haskew-Layton RE, Payappilly JB, Smirnova NA, Ma TC, Chan KK, Murphy TH, Guo H, Langley B et al (2010) Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway. Proc Natl Acad Sci U S A 107(40):17385–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Drukarch B, Schepens E, Jongenelen CA, Stoof JC, Langeveld CH (1997) Astrocyte-mediated enhancement of neuronal survival is abolished by glutathione deficiency. Brain Res 770(1–2):123–30

    Article  CAS  PubMed  Google Scholar 

  140. Xu L, Lee JE, Giffard RG (1999) Overexpression of bcl-2, bcl-XL or hsp70 in murine cortical astrocytes reduces injury of co-cultured neurons. Neurosci Lett 277(3):193–7

    Article  CAS  PubMed  Google Scholar 

  141. Narasimhan M, Rathinam M, Patel D, Henderson G, Mahimainathan L (2012) Astrocytes prevent ethanol induced apoptosis of Nrf2 depleted neurons by maintaining GSH homeostasis. Open J Apoptosis 1(2)

  142. Miao Y, Qiu Y, Lin Y, Miao Z, Zhang J, Lu X (2011) Protection by pyruvate against glutamate neurotoxicity is mediated by astrocytes through a glutathione-dependent mechanism. Mol Biol Rep 38(5):3235–42

    Article  CAS  PubMed  Google Scholar 

  143. Sandhu JK, Gardaneh M, Iwasiow R, Lanthier P, Gangaraju S, Ribecco-Lutkiewicz M, Tremblay R, Kiuchi K et al (2009) Astrocyte-secreted GDNF and glutathione antioxidant system protect neurons against 6OHDA cytotoxicity. Neurobiol Dis 33(3):405–14

    Article  CAS  PubMed  Google Scholar 

  144. Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28(50):13574–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Vargas MR, Pehar M, Cassina P, Beckman JS, Barbeito L (2006) Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75NTR-dependent motor neuron apoptosis. J Neurochem 97(3):687–96

    Article  CAS  PubMed  Google Scholar 

  146. Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23(8):3394–406

    CAS  PubMed  Google Scholar 

  147. Ye B, Shen H, Zhang J, Zhu YG, Ransom BR, Chen XC, Ye ZC (2015) Dual pathways mediate beta-amyloid stimulated glutathione release from astrocytes. Glia

  148. Brucklacher RM, Vannucci RC, Vannucci SJ (2002) Hypoxic preconditioning increases brain glycogen and delays energy depletion from hypoxia-ischemia in the immature rat. Dev Neurosci 24(5):411–7

    Article  CAS  PubMed  Google Scholar 

  149. Jones NM, Bergeron M (2004) Hypoxia-induced ischemic tolerance in neonatal rat brain involves enhanced ERK1/2 signaling. J Neurochem 89(1):157–67

    Article  CAS  PubMed  Google Scholar 

  150. Sen E, Basu A, Willing LB, Uliasz TF, Myrkalo JL, Vannucci SJ, Hewett SJ, Levison SW (2011) Pre-conditioning induces the precocious differentiation of neonatal astrocytes to enhance their neuroprotective properties. ASN Neuro 3(3), e00062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Gouix E, Buisson A, Nieoullon A, Kerkerian-Le Goff L, Tauskela JS, Blondeau N, Had-Aissouni L (2014) Oxygen glucose deprivation-induced astrocyte dysfunction provokes neuronal death through oxidative stress. Pharmacol Res 87:8–17

    Article  CAS  PubMed  Google Scholar 

  152. Jana A, Pahan K (2010) Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer’s disease. J Neurosci 30(38):12676–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fogal B, Li J, Lobner D, McCullough LD, Hewett SJ (2007) System x(c)- activity and astrocytes are necessary for interleukin-1 beta-mediated hypoxic neuronal injury. J Neurosci 27(38):10094–105

    Article  CAS  PubMed  Google Scholar 

  154. Jackman NA, Melchior SE, Hewett JA, Hewett SJ (2012) Non-cell autonomous influence of the astrocyte system xc- on hypoglycaemic neuronal cell death. ASN Neuro 4(1)

  155. Pertusa M, Garcia-Matas S, Rodriguez-Farre E, Sanfeliu C, Cristofol R (2007) Astrocytes aged in vitro show a decreased neuroprotective capacity. J Neurochem 101(3):794–805

    Article  CAS  PubMed  Google Scholar 

  156. Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8(10):397–403

    Article  CAS  PubMed  Google Scholar 

  157. Mandrekar-Colucci S, Landreth GE (2010) Microglia and inflammation in Alzheimer’s disease. CNS Neurol Disord Drug Targets 9(2):156–67

    Article  CAS  PubMed  Google Scholar 

  158. Ojo JO, Rezaie P, Gabbott PL, Stewart MG (2015) Impact of age-related neuroglial cell responses on hippocampal deterioration. Front Aging Neurosci 7:57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Theriault P, ElAli A, Rivest S (2015) The dynamics of monocytes and microglia in Alzheimer’s disease. Alzheimers Res Ther 7(1):41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Zhu X, Castellani RJ, Takeda A, Nunomura A, Atwood CS, Perry G, Smith MA (2001) Differential activation of neuronal ERK, JNK/SAPK and p38 in Alzheimer disease: the ‘two hit’ hypothesis. Mech Ageing Dev 123(1):39–46

    Article  CAS  PubMed  Google Scholar 

  161. Chan J, Jones NC, Bush AI, O’Brien TJ, Kwan P (2015) A mouse model of Alzheimer’s disease displays increased susceptibility to kindling and seizure-associated death. Epilepsia 56(6):e73–7

    Article  PubMed  Google Scholar 

  162. Zhu X, Raina AK, Perry G, Smith MA (2004) Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol 3(4):219–26

    Article  CAS  PubMed  Google Scholar 

  163. Hawkes CH, Del Tredici K, Braak H (2007) Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol 33(6):599–614

    Article  CAS  PubMed  Google Scholar 

  164. Verkhratsky A, Parpura V, Pekna M, Pekny M, Sofroniew M (2014) Glia in the pathogenesis of neurodegenerative diseases. Biochem Soc Trans 42(5):1291–301

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Wrote the paper: RKL and AMG. Designed the experiments: RKL. Conducted the experiments and analyzed the data: AMG, JMP, DP, MPH. Generated the figures: AMG. We are grateful to Mary Caruso, Deborah Willson, and Jackie Farrer for excellent administrative support and to Denise Butler-Bucilli and Christine Close for outstanding animal care. These studies were supported by a Hillman Foundation award (109033) and an R15 award from NIH (1R15NS093539) to RKL. The authors have no conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rehana K. Leak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig 1

Lactacystin-mediated severe proteotoxic stress preconditions astrocytes against subsequent insults. A) Five days after plating, astrocytes were treated with various concentrations of lactacystin or an equivalent v/v of vehicle (phosphate buffered saline) as the first hit. On the following day, the astrocytes were treated with vehicle or a second hit of lactacystin at the indicated concentrations. Viability was assayed 24 h after the second hit by counting Hoechst-stained nuclei. B) Representative images of Hoechst-stained nuclei for experiments shown in panel A. * p ≤ 0.05 vs 0 μM 2nd lactacystin hit; + p ≤ 0.05, ++ p ≤ 0.01, +++ p ≤ 0.001 vs 0 μM 1st lactacystin hit, two-way ANOVA followed by Bonferroni post hoc correction (GIF 109 kb)

High Resolution Image (TIFF 1989 kb)

Supplementary Fig 2

MG132 treatment is more lethal to small, bright nuclei than large nuclei. A) Hoechst-stained nuclei were categorized into two groups: those exhibiting small, brightly stained nuclei (50–150 μm2 in size and staining intensity greater than 20 arbitrary units for the mean gray value measurements) or large nuclei (greater than 150 μm2; all staining intensities). Raw counts of the numbers of nuclei per microscopic field of view (200× magnification) are shown here to supplement the transformed data in Figure 3P. * p ≤ 0.05, ** p ≤ 0.01 vs 0 μM 2nd MG132 hit; ++ p ≤ 0.01 vs vs 0 μM 1st MG132 hit; ^^ p ≤ 0.01, ^^^ p ≤ 0.001 vs small, bright nuclei, three-way ANOVA followed by Bonferroni post hoc correction (GIF 17 kb)

High Resolution Image (TIFF 298 kb)

Supplementary Fig 3

Stressed astrocytes can resist dual hits despite inhibition of heme oxygenase 1 (HO1, also known as Hsp32). A) Astrocytes were treated with the first and second MG132 hits or vehicle 24 h apart in the absence or presence of the HO1 inhibitor SnPPx. Viability was assayed 24 h after the second hit. B) Representative images of Hoechst stained nuclei. * p ≤ 0.05, *** p ≤ 0.001 vs 0 μM 2nd MG132 hit; + p ≤ 0.05, +++ p ≤ 0.001 vs 0 μM 1st MG132 hit, two-way ANOVA followed by Bonferroni post hoc correction (GIF 52 kb)

High Resolution Image (TIFF 1109 kb)

Supplementary Fig 4

Impact of first hit on glutathione-related enzymes. Astrocytes were treated with the first MG132 hit or vehicle and the following glutathione-related proteins were measured in lysates collected 24 h later: A) glutamate cysteine ligase catalytic subunit (GCLC), B) glutathione S-transferase π (GST-π). No significant difference was determined with the two-tailed paired Student’s t test. (GIF 23 kb)

High Resolution Image (TIFF 355 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gleixner, A.M., Posimo, J.M., Pant, D.B. et al. Astrocytes Surviving Severe Stress Can Still Protect Neighboring Neurons from Proteotoxic Injury. Mol Neurobiol 53, 4939–4960 (2016). https://doi.org/10.1007/s12035-015-9427-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9427-4

Keywords

Navigation