Skip to main content

Measurement of Oxidized/Reduced Glutathione Ratio

  • Protocol
  • First Online:
Protein Misfolding and Cellular Stress in Disease and Aging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 648))

Abstract

Glutathione (GSH) is the most abundant antioxidant in aerobic cells, present in micromolar (μM) ­concentrations in bodily fluids and in millimolar (mM) concentrations in tissue. GSH is critical for protecting the brain from oxidative stress, acting as a free radical scavenger and inhibitor of lipid peroxidation. GSH also participates in the detoxification of hydrogen peroxide by various glutathione peroxidases. The ratio of reduced GSH to oxidized GSH (GSSG) is an indicator of cellular health, with reduced GSH constituting up to 98% of cellular GSH under normal conditions. However, the GSH/GSSG ratio is reduced in neurodegenerative diseases, such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). Measuring the GSH/GSSG ratio in pathological tissues and experimental models thereof in comparison to the results in controls is an excellent way to assess potential therapeutics efficacy in maintaining cellular redox potential. The availability of UV/Visible instruments equipped with 96-well plate readers as common laboratory equipment has made measuring the GSH/GSSG ratio on multiple samples a manageable procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Janaky R, Cruz-Aguado R, Oja SS, Shaw CA (2007) Glutathione in the nervous system: roles in neural function and health and implications for neurological disease. In: Lajtha A, Oja SS, Saransaari P, Schousboe A (eds) Handbook of neurochemistry and molecular neurobiology. Amino acids and peptides in the nervous system, 3rd edn. Springer, New York, pp 349–418

    Google Scholar 

  2. Slivka A, Spina MB, Cohen G (1987) Reduced and oxidized glutathione in human and monkey brain. Neurosci Lett 74:112–118

    Article  PubMed  CAS  Google Scholar 

  3. Kosower NS, Kosower EM (1978) The glutathione status of cells. Int Rev Cytol 54:109–160

    Article  PubMed  CAS  Google Scholar 

  4. Lovell MA, Ehmann WD, Butler SM, Markesbery WR (1995) Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 45:1594–1601

    Article  PubMed  CAS  Google Scholar 

  5. Sofic E, Lange KW, Jellinger K, Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease. Neurosci Lett 142:128–130

    Article  PubMed  CAS  Google Scholar 

  6. Adams JD Jr, Wang B, Klaidman LK, LeBel CP, Odunze IN, Shah D (1993) New aspects of brain oxidative stress induced by tert-butylhydroperoxide. Free Radic Biol Med 15:195–202

    Article  PubMed  CAS  Google Scholar 

  7. Sultana R, Piroddi M, Galli F, Butterfield DA (2008) Protein levels and activity of some antioxidant enzymes in hippocampus of subjects with amnestic mild cognitive impairment. Neurochem Res 33:2540–2546

    Article  PubMed  CAS  Google Scholar 

  8. Ansari MA, Joshi G, Huang Q, Opii WO, Abdul HM, Sultana R, Butterfield DA (2006) In vivo administration of D609 leads to protection of subsequently isolated gerbil brain mitochondria subjected to in vitro oxidative stress induced by amyloid beta-peptide and other oxidative stressors: relevance to Alzheimer’s disease and other oxidative stress-related neurodegenerative disorders. Free Radic Biol Med 41:1694–1703

    Article  PubMed  CAS  Google Scholar 

  9. Boyd-Kimball D, Sultana R, Abdul HM, Butterfield DA (2005) Gamma-glutamylcysteine ethyl ester-induced up-regulation of glutathione protects neurons against Abeta(1-42)-mediated oxidative stress and neurotoxicity: implica­-tions for Alzheimer’s disease. J Neurosci Res 79:700–706

    Article  PubMed  CAS  Google Scholar 

  10. Joshi G, Hardas S, Sultana R, St Clair DK, Vore M, Butterfield DA (2007) Glutathione elevation by gamma-glutamyl cysteine ethyl ester as a potential therapeutic strategy for preventing oxidative stress in brain mediated by in vivo administration of adriamycin: implication for chemobrain. J Neurosci Res 85:497–503

    Article  PubMed  CAS  Google Scholar 

  11. Reed TT, Owen J, Pierce WM, Sebastian A, Sullivan PG, Butterfield DA (2009) Proteomic identification of nitrated brain proteins in traumatic brain-injured rats treated postinjury with gamma-glutamylcysteine ethyl ester: insights into the role of elevation of glutathione as a potential therapeutic strategy for traumatic brain injury. J Neurosci Res 87:408–417

    Article  PubMed  CAS  Google Scholar 

  12. Sultana R, Newman SF, Abdul HM, Cai J, Pierce WM, Klein JB, Merchant M, Butterfield DA (2006) Protective effect of D609 against amyloid-beta1-42-induced oxidative modification of neuronal proteins: redox proteomics study. J Neurosci Res 84:409–417

    Article  PubMed  CAS  Google Scholar 

  13. Butterfield DA, Pocernich CB, Drake J (2002) Elevated glutathione as a therapeutic strat­-egy in Alzheimer’s disease. Drug Dev Res 56:428–437

    Article  CAS  Google Scholar 

  14. Kemp M, Go YM, Jones DP (2008) Nonequilibrium thermodynamics of thiol/disulfide redox systems: a perspective on redox systems biology. Free Radic Biol Med 44:921–937

    Article  PubMed  CAS  Google Scholar 

  15. Anderson, ME (1996) Glutathione in Free Radicals: a practical approach (Punchard, N, Kelly, FJ, ed.) Oxford University Press, New York, NY, pp 213–226

    Google Scholar 

  16. Baker MA, Cerniglia GJ, Zaman A (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190:360–365

    Article  PubMed  CAS  Google Scholar 

  17. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Allan Butterfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Owen, J.B., Butterfield, D.A. (2010). Measurement of Oxidized/Reduced Glutathione Ratio. In: Bross, P., Gregersen, N. (eds) Protein Misfolding and Cellular Stress in Disease and Aging. Methods in Molecular Biology, vol 648. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-756-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-756-3_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-755-6

  • Online ISBN: 978-1-60761-756-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics