Skip to main content
Log in

Perilipin-2 limits remyelination by preventing lipid droplet degradation

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Foamy macrophages and microglia containing lipid droplets (LDs) are a pathological hallmark of demyelinating disorders affecting the central nervous system (CNS). We and others showed that excessive accumulation of intracellular lipids drives these phagocytes towards a more inflammatory phenotype, thereby limiting CNS repair. To date, however, the mechanisms underlying LD biogenesis and breakdown in lipid-engorged phagocytes in the CNS, as well as their impact on foamy phagocyte biology and lesion progression, remain poorly understood. Here, we provide evidence that LD-associated protein perilipin-2 (PLIN2) controls LD metabolism in myelin-containing phagocytes. We show that PLIN2 protects LDs from lipolysis-mediated degradation, thereby impairing intracellular processing of myelin-derived lipids in phagocytes. Accordingly, loss of Plin2 stimulates LD turnover in foamy phagocytes, driving them towards a less inflammatory phenotype. Importantly, Plin2-deficiency markedly improves remyelination in the ex vivo brain slice model and in the in vivo cuprizone-induced demyelination model. In summary, we identify PLIN2 as a novel therapeutic target to prevent the pathogenic accumulation of LDs in foamy phagocytes and to stimulate remyelination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Grajchen E, Hendriks JJA, Bogie JFJ (2018) The physiology of foamy phagocytes in multiple sclerosis. Acta Neuropathol Commun 6(1):124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bogie J et al (2011) Myelin-phagocytosing macrophages modulate autoreactive T cell proliferation. J Neuroinflamm 8(1):85

    Article  CAS  Google Scholar 

  3. Bogie JF et al (2012) Myelin-derived lipids modulate macrophage activity by liver X receptor activation. PLoS ONE 7(9):e44998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bogie JF et al (2013) Myelin alters the inflammatory phenotype of macrophages by activating PPARs. Acta Neuropathol Commun 1:43

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bogie JFJ et al (2020) Stearoyl-CoA desaturase-1 impairs the reparative properties of macrophages and microglia in the brain. J Exp Med 217(5):e20191660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cantuti-Castelvetri L et al (2018) Defective cholesterol clearance limits remyelination in the aged central nervous system. Science 359(6376):684–688

    Article  CAS  PubMed  Google Scholar 

  7. Haidar M et al (2022) Targeting lipophagy in macrophages improves repair in multiple sclerosis. Autophagy. https://doi.org/10.1080/15548627.2022.2047343

    Article  PubMed  Google Scholar 

  8. Olzmann JA, Carvalho P (2019) Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol 20(3):137–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Plakkal-Ayyappan J, Paul A, Goo YH (2016) Lipid droplet-associated proteins in atherosclerosis (Review). Mol Med Rep 13(6):4527–4534

    Article  PubMed  Google Scholar 

  10. Walther TC, Chung J, Farese RV Jr (2017) Lipid droplet biogenesis. Annu Rev Cell Dev Biol 33:491–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shiffman D et al (2000) Large scale gene expression analysis of cholesterol-loaded macrophages. J Biol Chem 275(48):37324–37332

    Article  CAS  PubMed  Google Scholar 

  12. Bickel PE, Tansey JT, Welte MA (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. BBA-Mol Cell Biol L 1791(6):419–440

    CAS  Google Scholar 

  13. Buechler C et al (2001) Adipophilin is a sensitive marker for lipid loading in human blood monocytes. Biochim Biophys Acta 1532(1–2):97–104

    Article  CAS  PubMed  Google Scholar 

  14. Imamura M et al (2002) ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am J Physiol Endocrinol Metab 283(4):E775–E783

    Article  CAS  PubMed  Google Scholar 

  15. Xu S et al (2019) Perilipin 2 and lipid droplets provide reciprocal stabilization. Biophys Rep 5(3):145–160

    Article  Google Scholar 

  16. Paul A et al (2008) Deficiency of adipose differentiation-related protein impairs foam cell formation and protects against atherosclerosis. Circ Res 102(12):1492–1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Larigauderie G et al (2006) Adipophilin increases triglyceride storage in human macrophages by stimulation of biosynthesis and inhibition of beta-oxidation. FEBS J 273(15):3498–3510

    Article  CAS  PubMed  Google Scholar 

  18. Larigauderie G et al (2004) Adipophilin enhances lipid accumulation and prevents lipid efflux from THP-1 macrophages: potential role in atherogenesis. Arterioscler Thromb Vasc Biol 24(3):504–510

    Article  CAS  PubMed  Google Scholar 

  19. McManaman JL et al (2013) Perilipin-2-null mice are protected against diet-induced obesity, adipose inflammation, and fatty liver disease. J Lipid Res 54(5):1346–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Erwig MS et al (2019) Myelin: methods for purification and proteome analysis. Methods Mol Biol 1936:37–63

    Article  CAS  PubMed  Google Scholar 

  21. Jorissen W et al (2017) Relapsing-remitting multiple sclerosis patients display an altered lipoprotein profile with dysfunctional HDL. Sci Rep 7:43410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cohen S (2018) Chapter three - lipid droplets as organelles. In: Galluzzi L (ed) International review of cell and molecular biology. Academic Press, pp 83–110

    Google Scholar 

  23. Fan B et al (2013) High glucose, insulin and free fatty acid concentrations synergistically enhance perilipin 3 expression and lipid accumulation in macrophages. Metabolism 62(8):1168–1179

    Article  CAS  PubMed  Google Scholar 

  24. Grajchen E et al (2020) CD36-mediated uptake of myelin debris by macrophages and microglia reduces neuroinflammation. J Neuroinflamm 17(1):224

    Article  CAS  Google Scholar 

  25. Wouters E et al (2020) Altered PPARγ expression promotes myelin-induced foam cell formation in macrophages in multiple sclerosis. Int J Mol Sci 21(23):9329

    Article  CAS  PubMed Central  Google Scholar 

  26. Bildirici I et al (2003) The lipid droplet-associated protein adipophilin is expressed in human trophoblasts and is regulated by peroxisomal proliferator-activated receptor-gamma/retinoid X receptor. J Clin Endocrinol Metab 88(12):6056–6062

    Article  CAS  PubMed  Google Scholar 

  27. Schadinger SE et al (2005) PPARgamma2 regulates lipogenesis and lipid accumulation in steatotic hepatocytes. Am J Physiol Endocrinol Metab 288(6):E1195–E1205

    Article  CAS  PubMed  Google Scholar 

  28. Targett-Adams P et al (2005) A PPAR response element regulates transcription of the gene for human adipose differentiation-related protein. Biochim Biophys Acta 1728(1–2):95–104

    Article  CAS  PubMed  Google Scholar 

  29. Bickel PE, Tansey JT, Welte MA (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 1791(6):419–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kimmel AR et al (2010) Adoption of PERILIPIN as a unifying nomenclature for the mammalian PAT-family of intracellular lipid storage droplet proteins. J Lipid Res 51(3):468–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fukushima M et al (2005) Adipose differentiation related protein induces lipid accumulation and lipid droplet formation in hepatic stellate cells. In Vitro Cell Dev Biol Anim 41(10):321–324

    Article  CAS  PubMed  Google Scholar 

  32. Bogie JF, Stinissen P, Hendriks JJ (2014) Macrophage subsets and microglia in multiple sclerosis. Acta Neuropathol 128(2):191–213

    Article  CAS  PubMed  Google Scholar 

  33. Chen FL et al (2010) Adipophilin affects the expression of TNF-alpha, MCP-1, and IL-6 in THP-1 macrophages. Mol Cell Biochem 337(1–2):193–199

    Article  CAS  PubMed  Google Scholar 

  34. Klionsky DJ et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12(1):1–222

    Article  PubMed  PubMed Central  Google Scholar 

  35. Singh R et al (2009) Autophagy regulates lipid metabolism. Nature 458(7242):1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lampron A et al (2015) Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J Exp Med 212(4):481–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Becker L et al (2010) A macrophage sterol-responsive network linked to atherogenesis. Cell Metab 11(2):125–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Son SH et al (2012) Perilipin 2 (PLIN2)-deficiency does not increase cholesterol-induced toxicity in macrophages. PLoS ONE 7(3):e33063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nocetti D et al (2020) Lipid droplets are both highly oxidized and Plin2-covered in hepatocytes of diet-induced obese mice. Appl Physiol Nutr Metab 45(12):1368–1376

    Article  CAS  PubMed  Google Scholar 

  40. Crunk AE et al (2013) Dynamic regulation of hepatic lipid droplet properties by diet. PLoS ONE 8(7):e67631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bildirici I et al (2018) PLIN2 is essential for trophoblastic lipid droplet accumulation and cell survival during hypoxia. Endocrinology 159(12):3937–3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saher G, Stumpf SK (2015) Cholesterol in myelin biogenesis and hypomyelinating disorders. Biochim Biophys Acta 1851(8):1083–1094

    Article  CAS  PubMed  Google Scholar 

  43. Gouna G et al (2021) TREM2-dependent lipid droplet biogenesis in phagocytes is required for remyelination. J Exp Med 218(10):e20210227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsumoto T, Kobayashi T, Kamata K (2007) Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem 14(30):3209–3220

    Article  CAS  PubMed  Google Scholar 

  45. Mardani I et al (2019) Plin2-deficiency reduces lipophagy and results in increased lipid accumulation in the heart. Sci Rep 9(1):6909

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tsai TH et al (2017) The constitutive lipid droplet protein PLIN2 regulates autophagy in liver. Autophagy 13(7):1130–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saliba-Gustafsson P et al (2019) Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed-forward loop between LXR and autophagy. J Intern Med 286(6):660–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Feng X et al (2014) Autophagy involved in lipopolysaccharide-induced foam cell formation is mediated by adipose differentiation-related protein. Lipids Health Dis 13:10

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zechner R, Madeo F, Kratky D (2017) Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol 18(11):671–684

    Article  CAS  PubMed  Google Scholar 

  50. Listenberger LL et al (2007) Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J Lipid Res 48(12):2751–2761

    Article  CAS  PubMed  Google Scholar 

  51. Russell TD et al (2011) Adipophilin regulates maturation of cytoplasmic lipid droplets and alveolae in differentiating mammary glands. J Cell Sci 124(Pt 19):3247–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ishii T et al (2004) Role of Nrf2 in the regulation of CD36 and stress protein expression in murine macrophages: activation by oxidatively modified LDL and 4-hydroxynonenal. Circ Res 94(5):609–616

    Article  CAS  PubMed  Google Scholar 

  53. Nagy L et al (1998) Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 93(2):229–240

    Article  CAS  PubMed  Google Scholar 

  54. Bogie JF et al (2017) Scavenger receptor collectin placenta 1 is a novel receptor involved in the uptake of myelin by phagocytes. Sci Rep 7:44794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Haidar M et al (2021) Lipophagy: a new player in CNS disorders. Trends Endocrinol Metab 32(11):941–951

    Article  CAS  PubMed  Google Scholar 

  56. Cingolani F, Czaja MJ (2016) Regulation and functions of autophagic lipolysis. Trends Endocrinol Metab 27(10):696–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ouimet M, Marcel YL (2012) Regulation of lipid droplet cholesterol efflux from macrophage foam cells. Arterioscler Thromb Vasc Biol 32(3):575–581

    Article  CAS  PubMed  Google Scholar 

  58. Boven LA et al (2006) Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain 129(Pt 2):517–526

    Article  PubMed  Google Scholar 

  59. Hikawa N, Takenaka T (1996) Myelin-stimulated macrophages release neurotrophic factors for adult dorsal root ganglion neurons in culture. Cell Mol Neurobiol 16(4):517–528

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M.P. Tulleners and L. Timmermans for excellent technical assistance.

Funding

The work has been supported by the Flemish Fund for Scientific Research (FWO Vlaanderen; 1141920N, 1S15519N), and the special research fund UHasselt (BOF).

Author information

Authors and Affiliations

Authors

Contributions

ML, EW, MH, JFJB, and JJAH conceived experiments. ML, EW, SV, JD, and MH performed experiments. ML, EW, SV, JD and MH analysed data. ML, EW, SV, HK, MH, JFJB, and JJAH discussed results. JLM provided the animals. ML, EW, and JFJB wrote the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Jerome J. A. Hendriks.

Ethics declarations

Conflict of interest

The authors declare no competing interests exist.

Ethics statement

Animal experiments in this study were carried out in accordance with the recommendations of the institutional animal care and use committee of Hasselt University. The protocol was approved by the institutional animal care and use committee of Hasselt University (protocol numbers: 201840, 201920, 201953).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5178 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loix, M., Wouters, E., Vanherle, S. et al. Perilipin-2 limits remyelination by preventing lipid droplet degradation. Cell. Mol. Life Sci. 79, 515 (2022). https://doi.org/10.1007/s00018-022-04547-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04547-0

Keywords

Navigation