Skip to main content
Log in

Evaluation of Markers of Oxidative Stress, Antioxidant Function and Astrocytic Proliferation in the Striatum and Frontal Cortex of Parkinson’s Disease Brains

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Dopaminergic neurons die in Parkinson’s disease (PD) due to oxidative stress and mitochondrial dysfunction in the substantia nigra (SN). We evaluated if oxidative stress occurs in other brain regions like the caudate nucleus (CD), putamen (Put) and frontal cortex (FC) in human postmortem PD brains (n = 6). While protein oxidation was elevated only in CD (P < 0.05), lipid peroxidation was increased only in FC (P < 0.05) and protein nitration was unchanged in PD compared to controls. Interestingly, mitochondrial complex I (CI) activity was unaffected in PD compared to controls. There was a 3–5 fold increase in the total glutathione (GSH) levels in the three regions (P < 0.01 in FC and CD; P < 0.05 in Put) but activities of antioxidant enzymes catalase, superoxide dismutase, glutathione reductase and glutathione-s-tranferase were not increased. Total GSH levels were elevated in these areas because of decreased activity of gamma glutamyl transpeptidase (γ-GT) (P < 0.05) activity suggesting a decreased breakdown of GSH. There was an increase in expression of glial fibrillary acidic protein (GFAP) (P < 0.001 in FC; P < 0.05 in CD) and glutathione peroxidase (P < 0.05 in CD and Put) activity due to proliferation of astrocytes. We suggest that increased GSH and astrocytic proliferation protects non-SN brain regions from oxidative and mitochondrial damage in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

PD:

Parkinson’s disease

AD:

Alzheimer’s disease

SN:

Substantia nigra

CI:

Mitochondrial complex I

ROS:

Reactive oxygen species

GSH:

Glutathione reduced

PMI:

Postmortem interval

FC:

Frontal cortex

CD:

Caudate nucleus

Put:

Putamen

SN:

Substantia Nigra

3-NT:

3-nitrotyrosine

GFAP:

Glial Fibrillary acidic protein

SOD:

Superoxide dismutase

GST:

Glutathione-s-transferase

GR:

Glutathione reductase

γ-GCL:

Gamma glutamyl cysteine ligase

γGT:

Gamma glutamyl transpeptidase

GPx:

Glutathione peroxidase

References

  1. Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression and mortality. Neurology 17:427–442

    PubMed  CAS  Google Scholar 

  2. Adams JD Jr, Chang ML, Klaidman L (2001) Parkinson’s disease–redox mechanisms. Curr Med Chem 8:809–814

    PubMed  CAS  Google Scholar 

  3. Beal MF (1992) Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 31:119–130

    Article  PubMed  CAS  Google Scholar 

  4. Jenner P, Dexter DT, Sian J et al. (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann Neurol 32(Suppl): S82–S87

    Google Scholar 

  5. Koiliatsos VE (1998) Parkinson’s disease. In: Burke RE (ed) Cell death and disease of the nervous system. Humana Press, Totowa, pp 459–475

    Google Scholar 

  6. Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8:721–738

    PubMed  CAS  Google Scholar 

  7. Bharath S, Hsu M, Kaur D et al (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64:1037–1048

    Article  PubMed  CAS  Google Scholar 

  8. Dexter DT, Carter CJ, Wells FR et al (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52:381–389

    Article  PubMed  CAS  Google Scholar 

  9. Yoritaka A, Hattori N, Uchida K et al (1996) Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc Natl Acad Sci USA 93:2696–2701

    Article  PubMed  CAS  Google Scholar 

  10. Alam ZI, Jenner A, Daniel SE et al (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69:1196–1203

    Article  PubMed  CAS  Google Scholar 

  11. Dexter DT, Wells FR, Lees AJ et al (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836

    Article  PubMed  CAS  Google Scholar 

  12. Sofic E, Paulus W, Jellinger K et al (1991) Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 56:978–982

    Article  PubMed  CAS  Google Scholar 

  13. Alam ZI, Daniel SE, Lees AJ et al (1997) A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease. J Neurochem 69:1326–1329

    Article  PubMed  CAS  Google Scholar 

  14. Floor E, Wetzel MG (1998) Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 70:268–275

    Article  PubMed  CAS  Google Scholar 

  15. Good PF, Hsu A, Werner P et al (1998) Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol 57:338–342

    Article  PubMed  CAS  Google Scholar 

  16. Blanchard-Fillion B, Prou D, Polydoro M et al (2006) Metabolism of 3-nitrotyrosine induces apoptotic death in dopaminergic cells. J Neurosci 26:6124–6130

    Article  PubMed  CAS  Google Scholar 

  17. Danielson SR, Andersen JK (2008) Oxidative and nitrative protein modifications in Parkinson’s disease. Free Radic Biol Med 44:1787–1794

    Article  PubMed  CAS  Google Scholar 

  18. Ferrante RJ, Hantraye P, Brouillet E et al (1999) Increased nitrotyrosine immunoreactivity in substantia nigra neurons in MPTP treated baboons is blocked by inhibition of neuronal nitric oxide synthase. Brain Res 823:177–182

    Article  PubMed  CAS  Google Scholar 

  19. Hasegawa E, Takeshige K, Oishi T et al (1990) 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem Biophys Res Commun 170:1049–1055

    Article  PubMed  CAS  Google Scholar 

  20. Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111:163–169

    PubMed  CAS  Google Scholar 

  21. Pennathur S, Jackson-Lewis V, Przedborski S et al (1999) Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine, and o, o’-dityrosine in brain tissue of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-treated mice, a model of oxidative stress in Parkinson’s disease. J Biol Chem 274:34621–34628

    Article  PubMed  CAS  Google Scholar 

  22. Keeney PM, Xie J, Capaldi RA et al (2006) Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci 26:5256–5264

    Article  PubMed  CAS  Google Scholar 

  23. Schapira AH, Cooper JM, Dexter D et al (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    Article  PubMed  CAS  Google Scholar 

  24. Jagatha B, Mythri RB, Vali S et al (2008) Curcumin treatment alleviates the effects of glutathione depletion in vitro and in vivo: therapeutic implications for Parkinson’s disease explained via in silico studies. Free Radic Biol Med 44:907–917

    Article  PubMed  CAS  Google Scholar 

  25. Rogers J, Mastroeni D, Leonard B et al (2007) Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder? Int Rev Neurobiol 82:235–246

    Article  PubMed  CAS  Google Scholar 

  26. Werner CJ, Heyny-von Haussen R, Mall G et al (2008) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteome Sci 6:8

    Article  PubMed  Google Scholar 

  27. Braak H, Del Tredici K, Rub U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    Article  PubMed  Google Scholar 

  28. Alladi PA, Mahadevan A, Shankar SK et al (2010) Expression of GDNF receptors GFRalpha1 and RET is preserved in substantia nigra pars compacta of aging Asian Indians. J Chem Neuroanat 40:43–52

    Article  PubMed  CAS  Google Scholar 

  29. Alladi PA, Mahadevan A, Vijayalakshmi K et al (2010) Ageing enhances alpha-synuclein, ubiquitin and endoplasmic reticular stress protein expression in the nigral neurons of Asian Indians. Neurochem Int 57:530–539

    Article  PubMed  CAS  Google Scholar 

  30. Alladi PA, Mahadevan A, Yasha TC et al (2009) Absence of age-related changes in nigral dopaminergic neurons of Asian Indians: relevance to lower incidence of Parkinson’s disease. Neuroscience 159:236–245

    Article  PubMed  CAS  Google Scholar 

  31. Karunakaran S, Saeed U, Mishra M et al (2008) Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-treated mice. J Neurosci 28:12500–12509

    Article  PubMed  CAS  Google Scholar 

  32. Karunakaran S, Saeed U, Ramakrishnan S et al (2007) Constitutive expression and functional characterization of mitochondrial glutaredoxin (Grx2) in mouse and human brain. Brain Res 1185:8–17

    Article  PubMed  CAS  Google Scholar 

  33. Agarwal V, Kommaddi RP, Valli K et al (2008) Drug metabolism in human brain: high levels of cytochrome P4503A43 in brain and metabolism of anti-anxiety drug alprazolam to its active metabolite. PLoS One 3:e2337

    Article  PubMed  Google Scholar 

  34. Chinta SJ, Kommaddi RP, Turman CM et al (2005) Constitutive expression and localization of cytochrome P-450 1A1 in rat and human brain: presence of a splice variant form in human brain. J Neurochem 93:724–736

    Article  PubMed  CAS  Google Scholar 

  35. Chandana R, Mythri RB, Mahadevan A et al (2009) Biochemical analysis of protein stability in human brain collected at different post-mortem intervals. Indian J Med Res 129:189–199

    PubMed  CAS  Google Scholar 

  36. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  37. Mythri RB, Jagatha B, Pradhan N et al (2007) Mitochondrial complex I inhibition in Parkinson’s disease: how can curcumin protect mitochondria? Antioxid Redox Signal 9:399–408

    Article  PubMed  CAS  Google Scholar 

  38. Trounce IA, Kim YL, Jun AS et al (1996) Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines. Methods Enzymol 264:484–509

    Article  PubMed  CAS  Google Scholar 

  39. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  40. Bagnyukova TV, Storey KB, Lushchak VI (2003) Induction of oxidative stress in Rana ridibunda during recovery from winter hibernation. J Therm Biol 28:21–28

    Article  CAS  Google Scholar 

  41. Guthenberg C, Alin P, Mannervik B (1985) Glutathione transferase from rat testis. Methods Enzymol 113:507–510

    Article  PubMed  CAS  Google Scholar 

  42. Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–490

    Article  PubMed  CAS  Google Scholar 

  43. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  PubMed  CAS  Google Scholar 

  44. Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  PubMed  CAS  Google Scholar 

  45. Seelig GF, Meister A (1985) Glutathione biosynthesis; gamma-glutamylcysteine synthetase from rat kidney. Methods Enzymol 113:379–390

    Article  PubMed  CAS  Google Scholar 

  46. Sian J, Dexter DT, Lees AJ et al (1994) Glutathione-related enzymes in brain in Parkinson’s disease. Ann Neurol 36:356–361

    Article  PubMed  CAS  Google Scholar 

  47. Albers DS, Beal MF (2000) Mitochondrial dysfunction and oxidative stress in aging and neurodegenerative disease. J Neural Transm Suppl 59:133–154

    PubMed  CAS  Google Scholar 

  48. Banerjee R, Starkov AA, Beal MF et al (2009) Mitochondrial dysfunction in the limelight of Parkinson’s disease pathogenesis. Biochim Biophys Acta 1792:651–663

    PubMed  CAS  Google Scholar 

  49. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  50. Schapira AH, Cooper JM, Dexter D et al (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269

    Article  PubMed  CAS  Google Scholar 

  51. Schapira AH, Mann VM, Cooper JM et al (1990) Anatomic and disease specificity of NADH CoQ1 reductase (complex I) deficiency in Parkinson’s disease. J Neurochem 55:2142–2145

    Article  PubMed  CAS  Google Scholar 

  52. Jenner P (1993) Altered mitochondrial function, iron metabolism and glutathione levels in Parkinson’s disease. Acta Neurol Scand Suppl 146:6–13

    PubMed  CAS  Google Scholar 

  53. Damier P, Hirsch EC, Zhang P et al (1993) Glutathione peroxidase, glial cells and Parkinson’s disease. Neuroscience 52:1–6

    Article  PubMed  CAS  Google Scholar 

  54. Mann VM, Cooper JM, Daniel SE et al (1994) Complex I, iron, and ferritin in Parkinson’s disease substantia nigra. Ann Neurol 36:876–881

    Article  PubMed  CAS  Google Scholar 

  55. Pearce RK, Owen A, Daniel S et al (1997) Alterations in the distribution of glutathione in the substantia nigra in Parkinson’s disease. J Neural Transm 104:661–677

    Article  PubMed  CAS  Google Scholar 

  56. Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33:305–310

    Article  PubMed  CAS  Google Scholar 

  57. Perry TL, Yong VW (1986) Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 67:269–274

    Article  PubMed  CAS  Google Scholar 

  58. Chinta SJ, Andersen JK (2006) Reversible inhibition of mitochondrial complex I activity following chronic dopaminergic glutathione depletion in vitro: implications for Parkinson’s disease. Free Radic Biol Med 41:1442–1448

    Article  PubMed  CAS  Google Scholar 

  59. Hsu M, Srinivas B, Kumar J et al (2005) Glutathione depletion resulting in selective mitochondrial complex I inhibition in dopaminergic cells is via an NO-mediated pathway not involving peroxynitrite: implications for Parkinson’s disease. J Neurochem 92:1091–1103

    Article  PubMed  CAS  Google Scholar 

  60. Clementi E, Brown GC, Feelisch M et al (1998) Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 95:7631–7636

    Article  PubMed  CAS  Google Scholar 

  61. Bharath S, Andersen JK (2005) Glutathione depletion in a midbrain-derived immortalized dopaminergic cell line results in limited tyrosine nitration of mitochondrial complex I subunits: implications for Parkinson’s disease. Antioxid Redox Signal 7:900–910

    Article  PubMed  CAS  Google Scholar 

  62. Greenamyre JT, Sherer TB, Betarbet R et al (2001) Complex I and Parkinson’s disease. IUBMB Life 52:135–141

    Article  PubMed  CAS  Google Scholar 

  63. Sian J, Dexter DT, Lees AJ et al (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol 36:348–355

    Article  PubMed  CAS  Google Scholar 

  64. Riederer P, Sofic E, Rausch WD et al (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520

    Article  PubMed  CAS  Google Scholar 

  65. Adams JD Jr, Klaidman LK, Odunze IN et al (1991) Alzheimer’s and Parkinson’s disease. Brain levels of glutathione, glutathione disulfide, and vitamin E. Mol Chem Neuropathol 14:213–226

    Article  PubMed  CAS  Google Scholar 

  66. Chinta SJ, Kumar JM, Zhang H et al (2006) Up-regulation of gamma-glutamyl transpeptidase activity following glutathione depletion has a compensatory rather than an inhibitory effect on mitochondrial complex I activity: implications for Parkinson’s disease. Free Radic Biol Med 40:1557–1563

    Article  PubMed  CAS  Google Scholar 

  67. Frade J, Pope S, Schmidt M et al (2008) Glutamate induces release of glutathione from cultured rat astrocytes–a possible neuroprotective mechanism? J Neurochem 105:1144–1152

    Article  PubMed  CAS  Google Scholar 

  68. Gegg ME, Beltran B, Salas-Pino S et al (2003) Differential effect of nitric oxide on glutathione metabolism and mitochondrial function in astrocytes and neurones: implications for neuroprotection/neurodegeneration? J Neurochem 86:228–237

    Article  PubMed  CAS  Google Scholar 

  69. Sagara J, Makino N, Bannai S (1996) Glutathione efflux from cultured astrocytes. J Neurochem 66:1876–1881

    Article  PubMed  CAS  Google Scholar 

  70. Shih AY, Johnson DA, Wong G et al (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406

    PubMed  CAS  Google Scholar 

  71. Ramsey CP, Glass CA, Montgomery MB et al (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66:75–85

    Article  PubMed  CAS  Google Scholar 

  72. McGeer PL, Itagaki S, Boyes BE et al (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38:1285–1291

    PubMed  CAS  Google Scholar 

  73. Mirza B, Hadberg H, Thomsen P et al (2000) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95:425–432

    Article  PubMed  CAS  Google Scholar 

  74. Bertrand E, Lechowicz W, Szpak GM et al (1997) Qualitative and quantitative analysis of locus coeruleus neurons in Parkinson’s disease. Folia Neuropathol 35:80–86

    PubMed  CAS  Google Scholar 

  75. Martin HL, Teismann P (2009) Glutathione–a review on its role and significance in Parkinson’s disease. FASEB J 23:3263–3272

    Article  PubMed  CAS  Google Scholar 

  76. Lin LF, Doherty DH, Lile JD et al (1993) GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260:1130–1132

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Department of Science and Technology (DST) (fast-track grant no.SR/FT/L-152/2005), India and Indian Council of Medical Research (ICMR IRIS ID No. 2009-07710), India, both to MMSB. RM was supported by a senior research fellowship from Council of Scientific and Industrial Research (CSIR), India. GH is a senior research fellow of ICMR, India. We thank all the donors and their relatives for donating human brain tissue samples for this study. Human brain tissue for the study is sourced from Human Brain Tissue Repository for Neurobiological Studies (A National Research Facility), Department of Neuropathology, NIMHANS, Bangalore 560 029.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Srinivas Bharath.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

11064_2011_471_MOESM1_ESM.tif

Supplementary Fig. 1 Analysis of markers of oxidative/nitrosative stress in the SN region of postmortem human brains (PD (representative PD sample no. 6 in Table 1) and controls (C)). a Total GSH was estimated in C vs PD in SN. b Estimation of lipid peroxidation in SN from C and PD samples. c Total protein extract after DNP-derivatization (~10 μg) in SN from C and PD samples were spotted on nitrocellulose membrane in triplicate followed by anti-DNP western blot (Oxyblot) and the quantitative plot of anti-DNP signal (normalized with β-actin signal) in C and PD SN regions is shown. d Total protein extracts (~25 μg) from SN from C and PD samples were spotted on nitrocellulose membrane followed by anti-3NT western blot and the quantitative plot of 3-NT signal (normalized with β-actin signal) in C and PD SN region are shown. All the samples were tested for oxidative markers in multiple experiments (n ≥ 3). **P < 0.01 and ***P < 0.001 in PD compared to C (TIFF 2409 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mythri, R.B., Venkateshappa, C., Harish, G. et al. Evaluation of Markers of Oxidative Stress, Antioxidant Function and Astrocytic Proliferation in the Striatum and Frontal Cortex of Parkinson’s Disease Brains. Neurochem Res 36, 1452–1463 (2011). https://doi.org/10.1007/s11064-011-0471-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-011-0471-9

Keywords

Navigation