Skip to main content
Log in

Application of Sonication in Combination with Vacuum Infiltration Enhances the Agrobacterium-Mediated Genetic Transformation in Indian Soybean Cultivars

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Soybean is a recalcitrant crop to Agrobacterium-mediated genetic transformation. Development of highly efficient, reproducible, and genotype-independent transformation protocol is highly desirable for soybean genetic improvement. Hence, an improved Agrobacterium-mediated genetic transformation protocol has been developed for cultivar PK 416 by evaluating various parameters including Agrobacterium tumefaciens strains (LBA4404, EHA101, and EHA105 harboring pCAMBIA1304 plasmid), sonication duration, vacuum infiltration pressure, and vacuum duration using cotyledonary node explants of soybean prepared from 7-day-old seedlings. The transformed plants were successfully developed through direct organogenesis system. Transgene expression was assessed by GUS histochemical and gfp visual assays, and integration was analyzed by PCR and Southern blot hybridization. Among the different combinations and durations evaluated, a maximum transformation efficiency of 18.6 % was achieved when the cotyledonary node explants of cv. PK 416 were sonicated for 20 s and vacuum infiltered for 2 min at 250 mmHg in A. tumefaciens EHA105 suspension. The amenability of the standardized protocol was tested on four more soybean cultivars JS 90-41, Hara Soy, Co 1, and Co 2 in which all the cultivars responded favorably with transformation efficiency ranging from 13.3 to 16.6 %. The transformation protocol developed in the present study would be useful to transform diverse soybean cultivars with desirable traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MS salts:

Murashige and Skoogs salts

B5 vitamins:

Gamborg vitamins

BA:

N 6-Benzylaminopurine

GA3 :

Gibberellic acid

MES:

2-(N-Morpholino) ethanesulfonic acid

IBA:

Indole-3-butyric acid

CaMV 35S:

Cauliflower mosaic virus 35S promoter

hpt II:

Hygromycin phosphotransferase II gene

npt II:

Neomycin phosphotransferase II gene

gfp-gus :

Green fluorescent protein-β-glucuronidase fusion gene

References

  1. FAOSTAT (2009) Agricultural data. Available on http://faostat.fao.org/ site/339/default.aspx.

  2. Shan, Z., Raemakers, K., Tzitzikas, E. N., Ma, Z., & Visser, R. G. (2005). Plant Cell Reports, 24(9), 507–512.

  3. Hinchee, M. A. W., Connor-Ward, D. V., Newell, C. A., McDonnell, R. E., Sato, S. J., Gasser, C. S., et al. (1988). Nature Biotechnology, 6(8), 915–922.

    Article  CAS  Google Scholar 

  4. Meurer, C. A., Dinkins, R. D., & Collins, G. B. (1998). Plant Cell Reports, 18(3), 180–186.

  5. Zhang, Z., Xing, A., Staswick, P., & Clemente, T. E. (1999). Plant Cell Tissue and Organ Culture, 56(1), 37–46.

    Article  CAS  Google Scholar 

  6. Clemente, T. E., La Vallee, B. J., Howe, A. R., Conner-Ward, D., Rozman, R. J., Hunter, P. E., et al. (2000). Crop Science, 40(3), 797–803.

  7. Donaldson, P., & Simmonds, D. (2000). Plant Cell Reports, 19(5), 478–484.

    Article  CAS  Google Scholar 

  8. Xing, A., Zhang, Z., Sato, S., Staswick, P., & Clemente, T. (2000). In Vitro Cellular & Developmental Biology. Plant, 36(6), 456–463.

    Article  CAS  Google Scholar 

  9. Olhoft, P. M., & Somers, D. A. (2001). Plant Cell Reports, 20(8), 706–711.

    Article  CAS  Google Scholar 

  10. Olhoft, P. M., Lin, K., Galbraith, J., Nielsen, N. C., & Somers, D. A. (2001). Plant Cell Reports, 20(8), 731–737.

    Article  CAS  Google Scholar 

  11. Olhoft, P. M., Flagel, L. E., Donovan, C. M., & Somers, D. A. (2003). Planta, 216(5), 723–735.

    CAS  Google Scholar 

  12. Paz, M. M., Shou, H., Guo, Z., Zhang, Z., Banerjee, A. K., & Wang, K. (2004). Euphytica, 136(2), 167–179.

    Article  CAS  Google Scholar 

  13. Zeng, P., Vadnais, D. A., Zhang, Z., & Polacco, J. C. (2004). Plant Cell Reports, 22(7), 478–482.

  14. Xue, R. G., Xie, H. F., & Zhang, B. (2006). Biotechnology Letters, 28(19), 1551–1557.

    Article  CAS  Google Scholar 

  15. Liu, S. J., Wei, Z. M., & Huang, J. Q. (2008). Plant Cell Reports, 27(3), 489–498.

    Article  CAS  Google Scholar 

  16. Ye, X., & Qin, H. (2008). Frontiers Agricultural China, 2(2), 156–161.

    Article  Google Scholar 

  17. Kim, W. S., Chronis, D., Juergens, M., Schroeder, A. C., Hyun, S. W., Jez, J. M., et al. (2011). Planta, 235(1), 13–23.

    Article  Google Scholar 

  18. Park, B. J., Liu, Z., Kanno, A., & Kameya, T. (2005). Plant Cell Reports, 24, 494–500.

    Article  CAS  Google Scholar 

  19. De Oliveira, M. L. P., Febres, V. J., Costa, M. G. C., Moore, G. A., & Otoni, W. C. (2009). Plant Cell Reports, 28, 387–395.

    Article  CAS  Google Scholar 

  20. Bakshi, S., Sadhukhan, A., Mishra, S., & Sahoo, L. (2011). Plant Cell Reports, 30, 2281–2292.

    Article  CAS  Google Scholar 

  21. Subramanyam, K., Subramanyam, K., Sailaja, K., Srinivasulu, M. V., & Lakshmidevi, K. (2011). Plant Cell Reports, 30(3), 425–436.

  22. Chopra, R., Aparna, & Saini, R. (2012). Scientia Horticulturae, 143, 127–134.

  23. Mayavan, S., Subramanyam, K., Arun, M., Rajesh, M., Dev, G. K., Sivanandhan, G., et al. (2013). Plant Cell Reports, 32, 1557–1574.

    Article  CAS  Google Scholar 

  24. Di, R., Purcell, V., Collins, G. B., & Ghabrial, S. A. (1996). Plant Cell Reports, 15(10), 746–750.

    Article  CAS  Google Scholar 

  25. Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15(3), 473–497.

    Article  CAS  Google Scholar 

  26. Gamborg, O. L., Miller, R. A., & Ojiama, K. (1968). Experimental Cell Research, 50, 151–158.

    Article  CAS  Google Scholar 

  27. Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J., & Schilperoort, R. A. (1983). Nature, 303, 179–180.

    Article  CAS  Google Scholar 

  28. Hood, E. E., Helmer, G. C., Fraley, R. T., & Chilton, M. D. (1986). Journal of Bacteriology, 168, 1291–1301.

  29. Hood, E. E., Gelvin, S. B., Melchers, L. S., & Hoekema, A. (1993). Transgenic Research, 2, 208–218.

    Article  CAS  Google Scholar 

  30. Jefferson, R. A., Kavanagh, T. A., & Bevan, N. W. (1987). The EMBO Journal, 6, 3901–3907.

    CAS  Google Scholar 

  31. Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). Plant Molecular Biology Reporter, 1, 19–21.

    Article  CAS  Google Scholar 

  32. Olhoft, P. M., & Phillips, R. L. (1999). Marcel Dekker. New York, 111–148.

  33. Mariashibu, T. S., Subramanyam, K., Arun, M., Mayavan, S., Rajesh, M., Theboral, J., et al. (2013). Acta Physiologiae Plantarum, 35, 41–54.

    Article  CAS  Google Scholar 

  34. Wang, G.L., & Fang, H.J. (1998). Science Publisher, Beijing.

  35. Rajesh, M., Jeyaraj, M., Sivanandhan, G., Subramanyam, K., Mariashibu, T. S., Mayavan, S., et al. (2013). Plant Cell Tissue and Organ Culture, 114, 71–82.

    Article  CAS  Google Scholar 

  36. Wang, G., & Xu, Y. (2008). Plant Cell Reports, 27(7), 1177–1184.

    Article  Google Scholar 

  37. Chen, W., Song, K., Cai, Y., Li, W., Liu, B., & Liu, L. (2011). Plant Molecular Biology Reporter, 29, 866–874.

    Article  CAS  Google Scholar 

  38. Trick, H. N., & Finer, J. J. (1997). Transgenic Research, 6, 329–337.

    Article  CAS  Google Scholar 

  39. Solís, J. I. F., Mlejnek, P., Studená, K., & Procházka, S. (2003). Plant, Soil and Environment, 49(6), 255–260.

    Google Scholar 

  40. Santarém, E. R., Trick, H. N., Essig, J. S., & Finer, J. J. (1998). Plant Cell Reports, 17, 752–759.

    Article  Google Scholar 

  41. Ye, X., Williams, E. J., Shen, J., Esser, J. A., Nichols, A. M., Petersen, M. W., et al. (2008). Transgenic Research, 17, 827–838.

    Article  CAS  Google Scholar 

  42. Indurker, S., Misra, H. S., & Eapen, S. (2010). Physiology Molecular Biology Plants, 16(3), 273–284.

    Article  CAS  Google Scholar 

  43. Wang, Q., Xing, S., Pan, Q., Yuan, F., Zhao, J., Tian, Y., et al. (2012). BMC Biotechnology, 12, 34.

    Article  Google Scholar 

  44. Ananthakrishnan, G., Xia, X., Amutha, S., Singer, S., Muruganantham, M., Yablonsky, S., et al. (2007). Plant Cell Reports, 26, 267–276.

    Article  CAS  Google Scholar 

  45. Beranová, M., Rakouský, S., Vávrová, Z., & Skalický, T. (2008). Plant Cell, Tissue and Organ Culture, 94, 253–259.

    Article  Google Scholar 

  46. Subramanyam, K., Rajesh, M., Jaganath, B., Vasuki, A., Theboral, J., Elayaraja, D., et al. (2013). Applied Biochemistry and Biotechnology, doi:10.1007/s12010-013-0359-z.

  47. Franklin, G., Carpenter, L., Davis, E., Reddy, C. S., Al-Abed, D., Abou Alaiwi, W., et al. (2004). Plant Growth Regulation, 43(1), 73–79.

  48. Paz, M. M., Martinez, J. C., Kalvig, A. B., Fonger, T. M., & Wang, K. (2006). Plant Cell Reports, 25(3), 206–213.

    Article  CAS  Google Scholar 

  49. Liu, Z., Park, B. J., Kanno, A., & Kameya, T. (2005). Molecular Breeding, 16, 189–197.

    Article  CAS  Google Scholar 

  50. Sanyal, I., Singh, A. K., Kaushik, M., & Amla, D. V. (2005). Plant Science, 168, 1135–1146.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Biotechnology (DBT) of Ministry of Science and Technology, New Delhi, Government of India for the financial support (BT/PR9622/AGR/02/464/2007). The corresponding author is thankful to University Grants Commission (UGC), Govt. of. India for providing fellowship under UGC–BSR scheme. Subramanyam and Sivanandhan are thankful to Council of Scientific and Industrial Research (CSIR), Govt. of India for the award of Senior Research Fellowship (SRF) to carry out their doctoral work.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Ganapathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun, M., Subramanyam, K., Mariashibu, T.S. et al. Application of Sonication in Combination with Vacuum Infiltration Enhances the Agrobacterium-Mediated Genetic Transformation in Indian Soybean Cultivars. Appl Biochem Biotechnol 175, 2266–2287 (2015). https://doi.org/10.1007/s12010-014-1360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-1360-x

Keywords

Navigation