Skip to main content
Log in

Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

An improved method of Agrobacterium-mediated transformation of cowpea was developed employing both sonication and vacuum infiltration treatments. 4 day-old cotyledonary nodes were used as explants for co-cultivation with Agrobacterium tumefaciens strain EHA105 harbouring the binary vector pSouv-cry1Ac. Among the different injury treatments, vacuum infiltration and their combination treatments tested, sonication for 20 s followed by vacuum infiltration for 5 min with A. tumefaciens resulted in highest transient GUS expression efficiency (93% explants expressing GUS at regenerating sites). After 3 days of co-cultivation, the explants were cultured in 150 mg/l kanamycin-containing selection medium and putative transformed plants were recovered. The presence, integration and expression of nptII and cry1Ac genes in T0 transgenic plants were confirmed by polymerase chain reaction (PCR), genomic Southern and qualitative reverse transcription (RT)-PCR analysis. Western blot hybridization and enzyme-linked immunosorbent assay (ELISA) detected and demonstrated the accumulation of Cry1Ac protein in transgenic plants. The cry1Ac gene transmitted in a Mendelian fashion. The stable transformation efficiency increased by 88.4% using both sonication-assisted Agrobacterium-mediated transformation (SAAT) and vacuum infiltration than simple Agrobacterium-mediated transformation in cowpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BAP:

6-Benzylaminopurine

TDZ:

Thidiazuron

GUS:

β-Glucuronidase

nptII :

Neomycin phosphotransferase II

SAAT:

Sonication-assisted Agrobacterium-mediated transformation

References

  • An G, Ebert PR, Mitra A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoot RA, Verma DPS (eds) Plant molecular biology manual, vol A3. Kluwer, The Netherlands, pp 1–19

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266. doi:10.1385/0-89603-391-0:259

    PubMed  CAS  Google Scholar 

  • Beranova′ M, Rakousky′ S, Va′vrova′ Z, Skalicky′ T (2008) Sonication assisted Agrobacterium-mediated transformation enhances the transformation efficiency in flax (Linum usitatissimum L.). Plant Cell Tiss Organ Cult 94:253–259. doi:10.1007/s11240-007-9335-z

    Article  Google Scholar 

  • Bidney D, Scelonge C, Martich J, Burrus M, Sims L, Huffman G (1992) Micro projectile bombardment of plant tissues increases transformation frequency by Agrobacterium tumefaciens. Plant Mol Biol 18:301–313. doi:10.1007/BF00034957

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Canche-Moo RLR, Ku-Gonzalez A, Burgeff C, Loyola-Vargas VM, Rodrı′guez-Zapata LC, Castan˜o E (2006) Genetic transformation of Coffea canephora by vacuum infiltration. Plant Cell Tiss Org Cult. doi:10.1007/s11240-005-9036-4

    Article  Google Scholar 

  • Charity JA, Holland L, Donaldson SS, Grace L, Walter C (2002) Agrobacterium mediated transformation of Pinus radiata organogenic tissue using vacuum infiltration. Plant Cell Tissue Organ Cult 70:51–60. doi:10.1023/A:1016009309176

    Article  CAS  Google Scholar 

  • Chaudhury D, Madanpotra S, Jaiwal R, Saini R, Kumar PA, Jaiwal PK (2007) Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpea (Vigna unguiculata L. Walp.) cultivar and transmission of transgenes into progeny. Plant Sci 172:692–700. doi:10.1016/j.plantsci.2006.11.009

    Article  CAS  Google Scholar 

  • Cheng M, Fry JE, Zhou H, Hironaka CM, Duncan DR, Coner TW, Wan Y (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980

    PubMed  CAS  Google Scholar 

  • Chilton MD, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71:3672–3676

    Article  PubMed  CAS  Google Scholar 

  • Clough J, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743. doi:10.1046/j.1365-313x.1998.00343.x

    Article  PubMed  CAS  Google Scholar 

  • Diouf D, Hilu KW (2005) Microsatellite and RAPD markers to study genetic relationships among cowpea breeding lines and local varieties in Senegal. Genet Resour Crop Evol 52:1957–1967

    Article  Google Scholar 

  • Du N, Pijut PM (2009) Agrobacterium-mediated transformation of Fraxinus pennsylvanica hypocotyls and plant regeneration. Plant Cell Rep 28:915–923. doi:10.1007/s00299-009-0697-z

    Article  PubMed  CAS  Google Scholar 

  • Ehlers JD, Hall AE (1997) Cowpea (Vigna unguiculata L. Walp). Field Crops Res 53:187–204

    Article  Google Scholar 

  • Fang J, Chao CT, Roberts PA, Ehlers JD (2007) Genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] in four West African and USA breeding programs as determined by AFLP analysis. Genet Resour Crop Evol 54:1197–1209. doi:10.1007/s10722-006-9101-9

    Article  CAS  Google Scholar 

  • Flores-Solı′s JI, Mlejnek P, Studena′ K, Procha′zka S (2007) Application of sonication-assisted Agrobacterium-mediated transformation in Chenopodium rubrum L. Plant Soil Environ 49:255–260

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cell. Exp Cell Res 50:151–158. doi:10.1016/0014-4827(68)90403-5

    Article  PubMed  CAS  Google Scholar 

  • Gomathinayagam P, Ganeshram S, Rathnaswamy R, Ramaswamy NM (1998) Interspecific hybridization between Vigna unguiculata (L.) Walp. and V. vexillata (L.) A. Rich. through in vitro embryo culture. Euphytica 102:203–209. doi:10.1023/A:1018381614098

    Article  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282. doi:10.1046/j.1365-313X.1994.6020271.x

    Article  PubMed  CAS  Google Scholar 

  • Indurker S, Misra HS, Eapen S (2010) Agrobcterium-mediated transformation in chickpea (Cicer arietinum L.) with an insecticidal protein gene: optimization of different factors. Physiol Mol Biol Plants 16(3):273–284. doi:10.1007/s12298-010-0030-x

    Article  CAS  Google Scholar 

  • Jaiwal PK, Kumari R, Ignacimuthu S, Potrykus I, Sautter C (2001) Agrobacterium tumefaciens-mediated transformation of mungbean (Vigna radiata)- a recalcitrant grain legume. Plant Sci 161:239–247. doi:10.1016/S0168-9452(01)00352-1

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimearic genes in plants: the GUS gene fusion system. Plant Mol Biol 204:387–405

    Google Scholar 

  • Joersbo M, Brunstedt J (1992) Sonication: a new method for gene transfer to plants Physiol. Plant. 85(2):230–234. doi:10.1111/j.1399-3054.1992.tb04727.x

    Article  CAS  Google Scholar 

  • Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Korber H, Redei GP, Schell J (1989) High frequency T-DNA- mediated gene tagging in plants. Proc Natl Acad Sci USA 86(21):8467–8471

    Article  PubMed  CAS  Google Scholar 

  • Leelavathi S, Sunnichan SG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): Embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470. doi:10.1007/s00299-003-0710-x

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Park BJ, Kanno A, Kameya T (2005) The novel use of a combination of sonication and vacuum infiltration in Agrobacterium-mediated transformation of kidney bean (Phaseolus vulgaris L.) with lea gene. Mol Breed 16:189–197. doi:10.1007/s11032-005-6616-2

    Article  CAS  Google Scholar 

  • Murashige T, Skoog S (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muthukumar B, Mariamma M, Veluthambi K, Gnanam A (1996) Genetic transformation of cotyledon explants of cowpea (Vigna unguiculata L. Walp) using Agrobacterium tumefaciens. Plant Cell Rep 15:980–985. doi:10.1007/BF00231600

    CAS  Google Scholar 

  • Oliveira MLP, Febres VJ, Costa MGC, Moore GA, Otoni WC (2009) High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Rep 28:387–395. doi:10.1007/s00299-008-0646-2

    Article  PubMed  CAS  Google Scholar 

  • Park BJ, Liu Z, Kanno A, Kameya T (2005) Transformation of radish (Raphanus sativus L.) via sonication and vacuum infiltration of germinated seeds with Agrobacterium harboring a group 3LEA gene from B. napus. Plant Cell Rep 24:494–500. doi:10.1007/s00299-005-0973-5

    Article  PubMed  CAS  Google Scholar 

  • Pathak MR, Hamzah RY (2008) An effective method of sonication-assisted Agrobacterium-mediated transformation of chickpeas. Plant Cell Tiss Organ Cult 93:65–71. doi:10.1007/s11240-008-9344-6

    Article  Google Scholar 

  • Paz MM, Martinez JC, Kalvig AB, Fonger TM, Wang K (2006) Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25(3):206–213. doi:10.1007/s00299-005-0048-7

    Article  PubMed  CAS  Google Scholar 

  • Popelka JC, Gollasch S, Moore A, Molvig L, Higgins TJV (2006) Genetic transformation of cowpea (Vigna unguiculata L.) and stable transmission of the transgenes to progeny. Plant Cell Rep 25:304–312. doi:10.1007/s00299-005-0053-x

    Article  PubMed  CAS  Google Scholar 

  • Potrykus I (1991) Gene transfer to plants: Assessment of Published Approaches and Results. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:205–225

    Article  CAS  Google Scholar 

  • Rohini VK, Manjunath NH, Rao KS (2005) Studies to develop systems to mobilize foreign genes into parasitic flowering plants. Physiol Mol Biol Plants 11(1):111–120

    CAS  Google Scholar 

  • Roome WJ (1992) Agrobacterium-mediated transformation of two forest tree species Prunus serotina and Fraxinus pennsylvanica. MS Thesis, State University of New York, College of Environmental Science and Forestry

  • Sahoo L, Jaiwal PK (2009) Asiatic Beans. In: Kole C, Hall TC (eds) Compendium of Transgenic Crop Plants. Wiley, New York, pp 115–132 doi:10.1002/9781405181099.k0307

  • Saini R, Jaiwal PK (2007) Agrobacterium tumefaciens - mediated transformation of blackgram: an assessment of factors influencing the efficiency of uidA gene transfer. Biol Plantarum 51(1):69–74. doi:10.1007/s10535-007-0014-z

    Article  CAS  Google Scholar 

  • Sambrook KJ, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Santare′m ER, Trick HN, Essing JS, Finer JJ (1998) Sonication assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752–759

    Article  Google Scholar 

  • Shimoda N, Toyoda-Yamamoto A, Nagamine J, Usami S, Katayama M, Sakagami Y, Machida Y (1990) Control of expression of Agrobacterium vir genes by synergistic action of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci USA 87:6684–6688. doi:10.1073/pnas.87.17.6684

    Article  PubMed  CAS  Google Scholar 

  • Silva TER, Cidade LC, Alvim FC, Cascardo JCM, Costa MGC (2009) Studies on genetic transformation of Theobroma cacao L.: evaluation of different polyamines and antibiotics on somatic embryogenesis and the efficiency of uidA gene transfer by Agrobacterium tumefaciens. Plant Cell Tiss Organ Cult 99:287–298. doi:10.1007/s11240-009-9603-1

    Article  CAS  Google Scholar 

  • Singh BB (2002) Recent genetic studies in cowpea. In: Fatokun CA, Tarawali SA, Singh BB, Kormawa PM, Tamo M (eds) Challenges and opportunities for enhancing sustainable cowpea production. International Institute of Tropical Agriculture, Ibadan, pp 3–13

    Google Scholar 

  • Solleti SK, Bakshi S, Purkayastha J, Panda SK, Sahoo L (2008a) Transgenic cowpea (Vigna unguiculata) seeds expressing a bean α-amylase inhibitor 1 confer resistance to storage pests, bruchid beetles. Plant Cell Rep 27:1841–1850. doi:10.1007/s00299-008-0606-x

    Article  PubMed  CAS  Google Scholar 

  • Solleti SK, Bakshi S, Sahoo L (2008b) Additional virulence genes in conjunction with efficient selection scheme, and compatible culture regime enhance recovery of stable transgenic plants in cowpea via Agrobacterium tumefaciens-mediated transformation. J Biotech 135:97–104. doi:10.1016/j.jbiotec.2008.02.008

    Article  CAS  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells which activate the T-DNA transfer process in Agrobacterium tumefaciens. Nature 318:624–629. doi:10.1038/318624a0

    Article  Google Scholar 

  • Subramanyam K, Subramanyam K, Sailaja KV, Srinivasulu M, Lakshmidevi K (2011) Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration. Plant Cell Rep 30(3):425–436. doi:10.1007/s00299-010-0996-4

    Article  PubMed  CAS  Google Scholar 

  • Supartana P, Shimizu T, Nogawa M, Shioiri H, Nakajima T, Haramoto N, Nozue M, Kojima M (2006) Development of simple and efficient in planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens. J Biosci Bioeng 102(3):162–170. doi:10.1263/jbb.102.162

    Article  PubMed  CAS  Google Scholar 

  • Tague BW, Mantis J (2006) In planta Agrobacterium-mediated transformation by vacuum infiltration. Methods Mol Biol 323:215–223. doi:10.1385/1-59745-003-0:215

    PubMed  Google Scholar 

  • Tang W (2003) Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Plant Cell Rep 21:555–562. doi:10.1007/s00299-002-0550-0

    PubMed  CAS  Google Scholar 

  • Tang W, Sederoff R, Whetten R (2001) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213:981–989. doi:10.1007/s004250100566

    Article  PubMed  CAS  Google Scholar 

  • Timko MP, Ehlers JD, Roberts PA (2007) Cowpea. In: Kole C (ed) Pulses, sugar and tuber crops. Theoretical and applied genetics, genome mapping and molecular breeding in plants, vol 3. Springer, Berlin, pp 49–67

    Google Scholar 

  • Trick H, Finer JJ (1997) SAAT:sonication-assisted Agrobacterium-mediated transformation. Transgenic Res 6:329–336. doi:10.1023/A:1018470930944

    Article  CAS  Google Scholar 

  • Trick HN, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Rep 17:482–488. doi:10.1007/s002990050429

    Article  CAS  Google Scholar 

  • Tzfira T, Jensen CS, Wang W, Zuker A, Vinocur B, Altman A, Vainstein A (1997) Transgenic Populus tremula: a step-by-step protocol for its Agrobacterium-mediated transformation. Plant Mol Biol Rep 15:219–235. doi:10.1023/A:1007484917759

    Article  CAS  Google Scholar 

  • Wang X, Zhou Z, Li Q, Gu XH, Ma DF (2006) Optimization of genetic transformation using SAAT in sweetpotato. Jiangsu J Agric Sci 22(1):14–18

    CAS  Google Scholar 

  • Xu P, Wu X, Wang B, Liu Y, Qin D, Ehlers JD, Close TJ, Hu T, Lu Z, Li G (2010) Development and polymorphism of Vigna unguiculata ssp. Unguiculata microsatellite markers used for phylogenetic analysis in asparagus bean (Vigna unguiculata ssp. sesquipedialis (L.) Verdc.). Mol breeding 25:675–684. doi:10.1007/s11032-009-9364-x

    CAS  Google Scholar 

  • Yeung EC, Aitken J, Biondi S, Thorpe TA (1981) Shoot histogenesis in cotyledon explants of radiata pine. Botan. Gaz. 142:494–501

    Article  Google Scholar 

  • Yookongkaew N, Srivatanakul M, Narangajavana J (2007) Development of genotype-independent regeneration system for transformation of rice (Oryza sativa ssp. indica). J Plant Res 120(2):237–245. doi:10.1007/s10265-006-0046-z

    Article  PubMed  CAS  Google Scholar 

  • Zaragoza’ C, Munoz-Bertomeu J, Arrillaga I (2004) Regeneration of herbicide-tolerant black locust transgenic plants by SAAT. Plant Cell Rep 22:832–838. doi:10.1007/s00299-004-0766-2

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. I. Altossar, University of Ottawa, Canada for providing p1AcPRD, Prof. K. Veluthambi, MKU, Madurai, India for Agrobacterium strain and Center for Application of Molecular Biology to International Agriculture (CAMBIA), Australia for pCAMBIA2301. The research was supported by the grants from Department of Biotechnology, Government of India. Souvika Bakshi is grateful to Council of Scientific and Industrial Research (CSIR) for Senior Research Fellowship, and Ayan Sadhukhan and Sagarika Mishra to Indian Institute of Technology Guwahati for doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingaraj Sahoo.

Additional information

Communicated by K. Toriyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakshi, S., Sadhukhan, A., Mishra, S. et al. Improved Agrobacterium-mediated transformation of cowpea via sonication and vacuum infiltration. Plant Cell Rep 30, 2281–2292 (2011). https://doi.org/10.1007/s00299-011-1133-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1133-8

Keywords

Navigation