Skip to main content
Log in

Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

An Erratum to this article was published on 14 February 2006

Abstract

The utility of transformation for soybean improvement requires an efficient system for production of stable transgenic lines. We describe here an improved cotyledonary node method using an alternative explant for Agrobacterium tumefaciens-mediated soybean transformation. We use the term “half-seed” to refer to this alternative cotyledonary explant that is derived from mature seed of soybean following an overnight imbibition and to distinguish it from cotyledonary node derived from 5–7-day-old seedlings. Transformation efficiencies using half-seed explants ranged between 1.4 and 8.7% with an overall efficiency of 3.8% based on the number of transformed events that have been confirmed in the T 1 generation by phenotypic assay using the herbicide Liberty® (active ingredient glufosinate) and by Southern analysis. This efficiency is 1.5-fold higher than the cotyledonary node method used in our laboratory. Significantly, the half-seed system is simple and does not require deliberate wounding of explants, which is a critical and technically demanding step in the cotyledonary node method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • An G, Evert PR, Mitra A, Ha SB (1988) Binary vectors. In: Gelvin SB, Schilperoort RA (eds.) Plant molecular biology manual A3. Kluwer Academic Publishers, Dordrecht, pp 1–19

    Google Scholar 

  • Buising CM, Shoemaker RC, Benbow RM (1994) Early events of multiple bud formation and shoot development in soybean embryonic axes treated with the cytokinin, 6-benzylaminopurine. Am J Bot 81:1435–1448

    Article  CAS  Google Scholar 

  • Carrington JC, Freed DD (1990) Cap-independent enhancement of translation by a plant potyvirus 5′ nontranslated region. J Virol 64:1590–1597

    PubMed  CAS  Google Scholar 

  • Clemente T, LaVallee BJ, Howe AR, Ward DC, Rozman RJ, Hunter PE, Broyles DL, Kasten DS, Hinchee MA (2000) Progeny analysis of glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Sci 40:797–803

    Article  CAS  Google Scholar 

  • Dan Y, Reichert NA (1998) Organogenic regeneration of soybean from hypocotyl explants. In Vitro Cell Dev Biol-Plant 34:14–21

    CAS  Google Scholar 

  • Di R, Purcell V, Collins GB, Ghabril SA (1996) Production of transgenic soybean lines expressing the bean pod mottle virus coat protein precursor gene. Plant Cell Rep 15:746–750

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Droste A, Pasquali G, Bodanese-Zanettini MH (2000) Integrated bombardment and Agrobacterium transformation system: an alternative method for soybean transformation. Plant Mol Biol Rep 18:51–59

    Article  CAS  Google Scholar 

  • Droste A, Pasquali G, Bodanese-Zanettini MH (2002) Transgenic fertile plants of soybean [Glycine max (L.) Merrill] obtained from bombarded embryogenic tissue. Euphytica 127:367–376

    Article  CAS  Google Scholar 

  • Finer KR, Finer JJ (2000) Use of Agrobacterium expressing green fluorescent protein to evaluate colonization of sonication-assisted Agrobacterium-mediated transformation-treated soybean cotyledons. Lett Appl Microbiol 30:406–410

    Article  PubMed  CAS  Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Hadi MZ, McMullen MD, Finer JJ (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15:500–505

    Article  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small versatile pZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Biotechnology 6:915–922

    Article  CAS  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton MD (1986) The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA. J Bacteriol 168:1291–1301

    PubMed  CAS  Google Scholar 

  • Ko T, Lee S, Krasnyanski S, Korban SS (2003) Two critical factors are required for efficient transformation of multiple soybean cultivars: Agrobacterium strain and orientation of immature cotyledonary explant. Theor Appl Genet 107:439–447

    Article  PubMed  CAS  Google Scholar 

  • Koscianska E, Wypijewski K (2001) Electroporated intact BY-2 tobacco culture cells as a model of transient expression study. Acta Biochim Pol 48:657–661

    PubMed  CAS  Google Scholar 

  • Liu H, Yang C, Wei Z (2004) Efficient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system. Planta 219:1042–1049

    Article  PubMed  CAS  Google Scholar 

  • Mason HS, DeWald D, Mullet JE (1993) Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell 5:241–251

    Article  PubMed  CAS  Google Scholar 

  • Meurer CA, Dinkins RD, Collins GB (1998) Factors affecting soybean cotyledonary node transformation. Plant Cell Rep 18:180–186

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 6:810–812

    Article  Google Scholar 

  • Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723–735

    PubMed  CAS  Google Scholar 

  • Olhoft PM, Lin K, Galbraith J, Nielsen NC, Somers DA (2001) The role of thiol compounds in increasing Agrobacterium-mediated transformation of soybean cotyledonary-node cells. Plant Cell Rep 20:731–737

    Article  CAS  Google Scholar 

  • Parrott WA, Hoffman LM, Hildebrand DF, Williams EG, Collins GB (1989) Recovery of primary transformants of soybean. Plant Cell Rep 7:615–617

    CAS  Google Scholar 

  • Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K (2004) Assessment of conditions affecting Agrobacterium-mediated soybean transformation using the cotyledonary node explant. Euphytica 136:167–179

    Article  CAS  Google Scholar 

  • Saka H, Voqui-Dinh TH, Cheng T (1980) Stimulation of multiple shoot formation on soybean stem nodes in culture. Plant Sci Lett 19:193–201

    Article  CAS  Google Scholar 

  • Santarem ER, Finer JJ (1999) Transformation of soybean [Glycine max (L.) Merrill] using proliferative embryogenic tissue maintained on semi-solid medium. In Vitro Cell Dev Biol Plant 35:451–455

    Article  Google Scholar 

  • Santarem ER, Trick HN, Essig JS, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression. Plant Cell Rep 17:752–759

    Article  CAS  Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    Article  PubMed  CAS  Google Scholar 

  • Townsend JA, Thomas LA (1993) An improved method of Agrobacterium-mediated transformation of cultured soybean cells. US Patent WO 94/02620

  • Vancanneyt G, Schmidt R, O'Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Article  PubMed  CAS  Google Scholar 

  • White J, Chang SP, Bibb MJ, Bibb MJ (1990) A cassette containing the bar gene of Streptomyces hygroscopicus: a selectable marker for plant transformation. Nucl Acids Res 18:1062

    Article  PubMed  CAS  Google Scholar 

  • Wright MS, Koehler SM, Hinchee MA, Carnes MG (1986) Plant regeneration by organogenesis in Glycine max. Plant Cell Rep 5:150–154

    Article  CAS  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  PubMed  CAS  Google Scholar 

  • Wu FS, Feng TY (1999) Delivery of plasmid DNA into intact plant cells by electroporation of plasmolyzed cells. Plant Cell Rep 18:381–386

    Article  CAS  Google Scholar 

  • Yan B, Reddy MSS, Collins GB, Dinkins RD (2000) Agrobacterium tumefaciens– mediated transformation of soybean [Glycine max (L.) Merrill] using immature zygotic cotyledon explants. Plant Cell Rep 19:1090–1097

    Article  CAS  Google Scholar 

  • Zeng P, Vadnais DA, Zhang Z, Polacco JC (2004) Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant Cell Rep 22:478–482

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Joanna Harbaugh, Amanda Ehrler and Francois Torney for their technical assistance; Mike Webber, Bayer CropScience, USA for graciously giving us Liberty® herbicide; and Bronwyn Frame and John Pesek for critical review of the manuscript and valuable suggestions. This work was partially supported by the Iowa Soybean Promotion Board and the North Central Soybean Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kan Wang.

Additional information

Communicated by J. C. Register

An erratum to this article can be found at http://dx.doi.org/10.1007/s00299-005-0113-2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paz, M.M., Martinez, J.C., Kalvig, A.B. et al. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep 25, 206–213 (2006). https://doi.org/10.1007/s00299-005-0048-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0048-7

Keywords

Navigation