Skip to main content
Log in

Evaluation of microstructure and mechanical behavior of a strengthened Al 5083 hybrid composite fabricated by squeezed assisted liquid metallurgy technique

  • Original Article
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

The Aluminium (Al) 5083 matrix composite is extensively employed in the shipbuilding sector, automobile body parts, and structural components due to its favourable weight-to-strength ratio, low wear rate, and exceptional resistance to corrosion in seawater. This study examines the microstructural and mechanical characteristics of Al 5083 matrix- SiC, Al2O3, B4C, and graphite reinforced hybrid composite. A two-stage squeeze stir casting technique was used to fabricate the hybrid matrix composite to ensure a consistent dispersion of the reinforcement particles within the Al matrix. The study also evaluated the materials’ microstructural changes, mechanical properties, and nanoindentation performance to ascertain the integrity of the produced hybrid composites. The primary objective of this study was to combine these four distinct reinforcements to achieve a broader range of material properties. The study sought to identify the most suitable composition for the hybrid composite by comparing the acquired values and considering both mechanical and microstructural properties. A nanoindentation test was also performed on each sample, and we analysed the micromechanical properties like Young’s modulus of elasticity and depth of penetration on the applied load. The microstructural analysis of the Al matrix revealed a uniform distribution of reinforcements, encompassing SiC, B4C, Al2O3, and Graphite. The X-ray diffraction (XRD) analysis demonstrated the absence of any formation of intermetallic compounds on the specimen’s surface. The fabricated composite exhibited significant enhancements in hardness and tensile strength, showing improvements of approximately 68% and 35%, respectively, compared to the base-squeezed alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Senthil Murugan, S., Jegan, V., Velmurugan, M.: Mechanical properties of SiC, Al2O3 reinforced aluminium 6061-T6 hybrid matrix composite. J. Inst. Eng. Ser. D. 99(1), 71–77 (2017). https://doi.org/10.1007/s40033-017-0142-3

    Article  Google Scholar 

  2. Kim, C.S., Cho, K., Manjili, M.H., Nezafati, M.: Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J. Mater. Sci. 52(23), 13319–13349 (2017). https://doi.org/10.1007/s10853-017-1378-x

    Article  Google Scholar 

  3. Baradeswaran, A., Elaya Perumal, A.: Study on mechanical and wear properties of Al 7075/Al2O 3/graphite hybrid composites. Compos. Part. B Eng. 56, 464–471 (2014). https://doi.org/10.1016/j.compositesb.2013.08.013

    Article  Google Scholar 

  4. Joslin Vijaya, D., Kumar, J.P., Robinson Smart, D.S.: Analysis of hybrid aluminium composite material reinforced with Ti and NbC nanoparticles processed through stir casting, Mater. Today Proc, vol. 51, no. xxxx, pp. 561–570, (2021). https://doi.org/10.1016/j.matpr.2021.05.683

  5. Ram Prabhu, T., et al.: Effects of dual-phase reinforcement particles (fly Ash + Al2O3) on the wear and Tensile properties of the AA 7075 Al Alloy based composites. J. Inst. Eng. Ser. D. 100(1), 29–35 (2019). https://doi.org/10.1007/s40033-019-00172-7

    Article  Google Scholar 

  6. Reddy, T.P., Kishore, S.J., Theja, P.C., Rao, P.P.: Development and wear behavior investigation on aluminum-7075/B4C/fly ash metal matrix composites. Adv. Compos. Hybrid. Mater. 3(2), 255–265 (2020). https://doi.org/10.1007/s42114-020-00145-5

    Article  Google Scholar 

  7. Hariprasad, T., Varatharajan, K., Ravi, S.: Wear characteristics of B4C and Al2O3 reinforced with Al 5083 metal matrix based hybrid composite. Procedia Eng. 97, 925–929 (2014). https://doi.org/10.1016/j.proeng.2014.12.368

    Article  Google Scholar 

  8. Ahamed, H., Senthilkumar, V.: Experimental investigation on newly developed ultrafine-grained aluminium based nano-composites with improved mechanical properties. Mater. Des. 37, 182–192 (2012). https://doi.org/10.1016/j.matdes.2011.12.036

    Article  Google Scholar 

  9. Leng, J., Jiang, L., Wu, G., Tian, S., Chen, G.: Effect of graphite particle reinforcement on dry sliding wear of SiC/Gr/Al composites. Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 38(11), 1894–1898 (2009). https://doi.org/10.1016/s1875-5372(10)60059-8

    Article  Google Scholar 

  10. Ayyanar, S., Gnanavelbabu, A., Rajkumar, K., Loganathan, P.: Studies on high temperature wear and Friction Behaviour of AA6061/B4C/hBN hybrid composites. Met. Mater. Int. 27(8), 3040–3057 (2021). https://doi.org/10.1007/s12540-020-00710-z

    Article  Google Scholar 

  11. Pul, M., Erdem, U., Turkoz, M.B., Yildirim, G.: The effect of sintering parameters and MgO ratio on structural properties in Al7075/MgO composites: A review. J. Mater. Sci. 58(2), 664–684 (2023). https://doi.org/10.1007/s10853-022-08003-z

    Article  Google Scholar 

  12. Chaudhary, N., Singh, S.: Experimental investigation on microstructural and mechanical properties of in situ SiC-reinforced friction stir spot weld of Al 6061-T6. J. Mater. Sci. 58(4), 1849–1868 (2023). https://doi.org/10.1007/s10853-022-08110-x

    Article  Google Scholar 

  13. Moona, G., Walia, R.S., Rastogi, V., Sharma, R.: Parameter optimization and characterization of environmental friendly aluminium hybrid metal matrix composites. Mater. Res. Express. 6(11) (Nov. 2019). https://doi.org/10.1088/2053-1591/ab4fb4

  14. Mohanavel, V., Rajan, K., Suresh Kumar, S., Vijayan, G., Vijayanand, M.S.: Study on mechanical properties of graphite particulates reinforced aluminium matrix composite fabricated by stir casting technique, Mater. Today Proc, vol. 5, no. 1, pp. 2945–2950, (2018). https://doi.org/10.1016/j.matpr.2018.01.090

  15. Manikandan, R., Arjunan, T.V., Akhil, A.R.: Studies on micro structural characteristics, mechanical and tribological behaviours of boron carbide and cow dung ash reinforced aluminium (Al 7075) hybrid metal matrix composite, Composites Part B: Engineering, vol. 183. Elsevier Ltd, Feb. 15, (2020). https://doi.org/10.1016/j.compositesb.2019.107668

  16. Binti Nor Zamani, N.A., Iqbal, A.A., Nuruzzaman, D.M.: Tribo-mechanical characterisation of self-lubricating aluminium based hybrid metal matrix composite fabricated via powder metallurgy. Materialia. 14, 100936 (2020). https://doi.org/10.1016/j.mtla.2020.100936

    Article  Google Scholar 

  17. Jo, M.C., et al.: Novel dynamic compressive and ballistic properties in 7075-T6 Al-matrix hybrid composite reinforced with SiC and B4C particulates. Compos. Part. B Eng. 174, 107041 (2019). https://doi.org/10.1016/j.compositesb.2019.107041

    Article  Google Scholar 

  18. Srinivasan, R., Suresh Babu, B., Mohamed Shufiyan, M., Mohammed Thoufeeq, A., Mohan Sanjay, S., Keerthi Varman, S.: Experimental investigation on tribological behaviour of aluminium hybrid metal matrix composites processed through stir cum squeeze casting technique, Mater. Today Proc, vol. 27, no. xxxx, pp. 1756–1760, (2020). https://doi.org/10.1016/j.matpr.2020.03.661

  19. Onat, A., Akbulut, H., Yilmaz, F.: Production and characterisation of silicon carbide particulate reinforced aluminium-copper alloy matrix composites by direct squeeze casting method. J. Alloys Compd. 436, 1–2 (2007). https://doi.org/10.1016/j.jallcom.2006.07.057

    Article  Google Scholar 

  20. Venkatesh, L., Arjunan, T.V., Arulraj, M., Ravikumar, K.: Study on tribological behaviour of aluminium hybrid composites strengthened with novel groundnut shell ash and boron carbide, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng, vol. 237, no. 2, pp. 350–363, (2023). https://doi.org/10.1177/09544089221112162

  21. Feng, Y.C., Geng, L., Zheng, P.Q., Zheng, Z.Z., Wang, G.S.: Fabrication and characteristic of Al-based hybrid composite reinforced with tungsten oxide particle and aluminum borate whisker by squeeze casting. Mater. Des. 29(10), 2023–2026 (2008). https://doi.org/10.1016/j.matdes.2008.04.006

    Article  Google Scholar 

  22. Manikandan, R., Arjunan, T.V.: Microstructure and mechanical characteristics of CDA–B4C Hybrid Metal Matrix composites. Met. Mater. Int. 27(5), 885–899 (May 2021). https://doi.org/10.1007/s12540-019-00518-6

  23. Daniel, S.A.A.: Study on Tribological Behaviour of Al/SiC/MoS2 Hybrid Metal Matrix composites in High Temperature Environmental Condition. Silicon. 10(5), 2129–2139 (2018). https://doi.org/10.1007/s12633-017-9739-2

    Article  Google Scholar 

  24. Vinod, B., Ramanathan, S., Ananthi, V., Selvakumar, N.: Fabrication and characterization of Organic and In-Organic Reinforced A356 Aluminium Matrix Hybrid Composite by Improved double-stir casting. Silicon. 11(2), 817–829 (2019). https://doi.org/10.1007/s12633-018-9881-5

    Article  Google Scholar 

  25. Saxena, M., et al.: Jun., Fabrication and Characterization of hybrid aluminium-fly ash-graphite composite, in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, (2020). https://doi.org/10.1088/1757-899X/804/1/012032

  26. Srivastava, A.K., Maurya, N.K., Dixit, A.R., Dwivedi, S.P., Saxena, A., Maurya, M.: Experimental investigations of A359/Si3N4 surface composite produced by multi-pass friction stir processing, Mater. Chem. Phys, vol. 257, no. January p. 123717, 2021, (2020). https://doi.org/10.1016/j.matchemphys.2020.123717

  27. Shinde, D.M., Sahoo, P.: Nanoindentation, scratch, and Corrosion studies of Aluminum composites Reinforced with Submicron B4C particles. Int. J. Met. 16(3), 1363–1387 (2022). https://doi.org/10.1007/s40962-021-00692-7

    Article  Google Scholar 

  28. Kumar, A., et al.: December., The utilisation of coconut shell ash in production of hybrid composite: Microstructural characterisation and performance analysis, J. Clean. Prod, vol. 398, no. 2023, (2022). https://doi.org/10.1016/j.jclepro.2023.136494

  29. Alizadeh, A., Khayami, A., Karamouz, M., Hajizamani, M.: Mechanical properties and wear behavior of Al5083 matrix composites reinforced with high amounts of SiC particles fabricated by combined stir casting and squeeze casting; a comparative study. Ceram. Int. 48(1), 179–189 (2022). https://doi.org/10.1016/j.ceramint.2021.09.093

    Article  Google Scholar 

  30. Lal, S., Kumar, S., Khan, Z.A.: Microstructure evaluation, thermal and mechanical characterization of hybrid metal matrix composite. IEEE J. Sel. Top. Quantum Electron. 25(6), 1187–1196 (2018). https://doi.org/10.1515/secm-2017-0210

    Article  Google Scholar 

  31. Maurya, M., Kumar, S., Bajpai, V.: Assessment of the mechanical properties of aluminium metal matrix composite: A review, J. Reinf. Plast. Compos, vol. 38, no. 6, pp. 267–298, Mar. (2019). https://doi.org/10.1177/0731684418816379

  32. Vignesh Kumar, V., Raja, K., Chandra Sekar, V.S., Ramkumar, T.: Thrust force evaluation and microstructure characterization of hybrid composites (Al7075/B 4 C/BN) processed by conventional casting technique. J. Brazilian Soc. Mech. Sci. Eng. 41(5), 1–14 (2019). https://doi.org/10.1007/s40430-019-1728-5

    Article  Google Scholar 

  33. Hillary, J.J.M., Sundaramoorthy, R., Ramamoorthi, R., Chelladurai, S.J.S.: Investigation on Microstructural characterization and mechanical behaviour of Aluminium 6061 – CSFA / sicp hybrid metal Matrix composites. Silicon. 14(17), 11561–11576 (2022). https://doi.org/10.1007/s12633-022-01881-7

    Article  Google Scholar 

  34. Ranjan, R., Kumar Singh, N., Prakash Jaiswal, A., Bajpai, V.: Metal matrix nano composites using graphene nano platelets indented on copper particles in aluminium matrix. Adv. Mater. Lett. 9(9), 652–655 (2018). https://doi.org/10.5185/amlett.2018.2078

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar Giri.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, M.K., Choubey, V.K. & Upadhyay, V. Evaluation of microstructure and mechanical behavior of a strengthened Al 5083 hybrid composite fabricated by squeezed assisted liquid metallurgy technique. Int J Interact Des Manuf 18, 1611–1625 (2024). https://doi.org/10.1007/s12008-024-01785-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12008-024-01785-3

Keywords

Navigation