Skip to main content
Log in

A review of aluminum metal matrix composites: fabrication route, reinforcements, microstructural, mechanical, and corrosion properties

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Aluminum matrix composites (AMCs) developed with micro/nano-reinforcements emerge as an attractive candidate for innumerable applications, including automotive, aerospace, electronics, biomedical, and many more, owing to their high strength-to-weight ratio and outstanding tribological, mechanical, electrical, and thermal characteristics. This work aims to offer a review of the state of the art of research in the processing, fabrication, properties, and potential applications of AMCs. The review starts with an emphasis on light-weighted AMCs, followed by a brief discussion of the hybrid metal matrix composite structure and micro/nano-reinforcement. This review also includes an in-depth assessment of manufacturing processes and parametric factors that regulate the properties of AMCs. It also highlights the challenges that are currently encountered when processing AMCs, such as limited wettability, reinforcement agglomeration, and interfacial reactions, before analyzing the effect of adding micro/nano-reinforcements on the attributes of AMCs. In addition to the stated characteristics, the most feasible and novel applications of AMCs have been envisioned. Lastly, new research directions in the field of AMCs have been recommended and critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54
Figure 55
Figure 56

Similar content being viewed by others

References

  1. Saidi K, Omri A (2020) Reducing CO2 emissions in OECD countries: do renewable and nuclear energy matter. Prog Nucl Energy 126:103425

    Article  CAS  Google Scholar 

  2. Santin, J-J, Onder CH, Bernard J, Isler D, Kobler P, Kolb F, Weidmann C, and Guzzella L (2007) The world's most fuel-efficient vehicle: design and development of pac car II. vdf Hochschulverlag AG.

  3. Kumar M, Shao Z, Braun C, and Bandivadekar A (2022) Decarbonizing India’s road transport: a meta-analysis of road transport emissions models..

  4. Ramachandran K, Boopalan V, Bear JC, Subramani R (2022) Multi-walled carbon nanotubes (MWCNTs)-reinforced ceramic nanocomposites for aerospace applications: a review. J Mater Sci 57(6):3923–3953

    Article  CAS  ADS  Google Scholar 

  5. Baker DA, Rials TG (2013) Recent advances in low-cost carbon fiber manufacture from lignin. J Appl Polym Sci 130(2):713–728

    Article  CAS  Google Scholar 

  6. Joost WJ (2012) Reducing vehicle weight and improving US energy efficiency using integrated computational materials engineering. JOM 64:1032–1038

    Article  Google Scholar 

  7. Kumar D, Jain J, Gosvami NN (2022) Macroscale to nanoscale tribology of magnesium-based alloys: a review. Tribol Lett 70(1):27

    Article  Google Scholar 

  8. Hoogma R, Kemp R, Schot J, and Truffer B (2002) Experimenting for sustainable transport. Taylor & Francis.

  9. Olhan S, Khatkar V, and Behera BK (2021) "Textile-based natural fibre-reinforced polymeric composites in automotive lightweighting. J Mater Sci, 1–44.

  10. Huang R, Riddle M, Graziano D, Warren J, Das S, Nimbalkar S, Cresko J, Masanet E (2016) Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. J Clean Prod 135:1559–1570

    Article  CAS  Google Scholar 

  11. Karabulut Y, Ünal R (2022) Additive manufacturing of ceramic particle-reinforced aluminum-based metal matrix composites: a review. J Mater Sci 57(41):19212–19242

    Article  CAS  ADS  Google Scholar 

  12. Warren AS (2004) Developments and challenges for aluminum–a boeing perspective. Mater Forum 28:24–31

    CAS  Google Scholar 

  13. Nishino K (2017) Development of fuel economy regulations and impact on automakers. Mitsui global strategic studies institute monthly report (2017).

  14. IHS, Light vehicle production from 2016 to 2024, by major market (in million units), Statista (2017).

  15. Taub A, De Emmanuel M, Luo A, Matlock DK, Speer JG, Vaidya U (2019) Materials for automotive lightweighting. Annu Rev Mater Res 4:327–359

    Article  ADS  Google Scholar 

  16. Lagneborg R (1991) New steels and steel applications for vehicles. Mater Des 12(1):3–14

    Article  CAS  Google Scholar 

  17. Nunney MJ (2007) Light and heavy vehicle technology. Routledge (2007).

  18. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. J Mater Sci 55(3):829–892

    Article  CAS  ADS  Google Scholar 

  19. Kumar PL, Lombardi A, Byczynski G, Narayana Murty SVS, Murty BS, and Bichler L (2022) "Recent advances in aluminium matrix composites reinforced with graphene-based nanomaterial: a critical review." Progress Mater Sci 100948.

  20. Li Y, Liu J, Huang W, Zhang S (2022) Microstructure related analysis of tensile and fatigue properties for sand casting aluminum alloy cylinder head. Eng Fail Anal 136:106210

    Article  CAS  Google Scholar 

  21. Rohatgi P (1991) Cast aluminum-matrix composites for automotive applications. JOM 43(4):10–15

    Article  CAS  Google Scholar 

  22. Rawal SP (2001) Metal-matrix composites for space applications. JOM 53(4):14–17

    Article  CAS  Google Scholar 

  23. Dai Q, Kelly J, and Elgowainy A (2016) "Vehicle materials: material composition of US light-duty vehicles." Energy systems division, argonne national labs: Chicago, USA 1–30.

  24. Miracle DB (2005) Metal matrix composites–from science to technological significance. Compos Sci Technol 65(15–16):2526–2540

    Article  CAS  Google Scholar 

  25. Krishnan PK "Fabrication and application of aluminum metal matrix composites." In Advanced manufacturing techniques for engineering and engineered materials, pp. 133–151.

  26. Zhou MY, Ren LB, Fan LL, Zhang YWX, Lu TH, Quan GF, Gupta M (2020) Progress in research on hybrid metal matrix composites. J Alloy Compd 838:155274

    Article  CAS  Google Scholar 

  27. Ramanathan A, Krishnan PK, Muraliraja R (2019) A review on the production of metal matrix composites through stir casting–Furnace design, properties, challenges, and research opportunities. J Manuf Process 42:213–245

    Article  Google Scholar 

  28. Qian W, Wu S, Lei L, Hu Q, Liu C (2024) Time lapse in situ X-ray imaging of failure in structural materials under cyclic loads and extreme environments. J Mater Sci Technol 175:80–103

    Article  Google Scholar 

  29. Moona G, Walia RS, Rastogi V, Sharma R (2018) Aluminium metal matrix composites: a retrospective investigation. Indian J Pure Appl Phys (IJPAP) 56(2):164–175

    Google Scholar 

  30. Kim C-S, Cho K, Manjili MH, Nezafati M (2017) Mechanical performance of particulate-reinforced Al metal-matrix composites (MMCs) and Al metal-matrix nano-composites (MMNCs). J Mater Sci 52:13319–13349

    Article  CAS  ADS  Google Scholar 

  31. Yoo SC, Lee D, Ryu SW, Kang B, Ryu HJ, and Hong SH. Recent progress in low-dimensional nanomaterials filled multifunctional metal matrix nanocomposites. Progress Mater Sci 101034.

  32. Ujah CO, Popoola API, Popoola OM, Aigbodion VS (2019) Enhanced tribology, thermal and electrical properties of Al-CNT composite processed via spark plasma sintering for transmission conductor. J Mater Sci 54(22):14064–14073

    Article  CAS  ADS  Google Scholar 

  33. Sun H, Saba F, Fan G, Tan Z, Li Z (2022) Micro/nano-reinforcements in bimodal-grained matrix: a heterostructure strategy for toughening particulate reinforced metal matrix composites. Scripta Mater 217:114774

    Article  CAS  Google Scholar 

  34. Sajjadi SA, TorabiParizi M, Ezatpour HR, Sedghi A (2012) Fabrication of A356 composite reinforced with micro and nano Al2O3 particles by a developed compocasting method and study of its properties. J Alloys Compd 511(1):226–231

    Article  CAS  Google Scholar 

  35. Chak V, Chattopadhyay H, Dora TL (2020) A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites. J Manuf Process 56:1059–1074

    Article  Google Scholar 

  36. Singh AK, Soni S, Rana RS (2020) A critical review on synthesis of aluminum metallic composites through stir casting: challenges and opportunities. Adv Eng Mater 22(10):2000322

    Article  CAS  Google Scholar 

  37. Wang Q, Hess D, Yan X, and Caron F (2018) Evaluation of a new high temperature cast aluminum for cylinder head applications." In Proceedings of the 122nd metalcasting congress, Fort Worth, TX, USA, pp. 3–5. 2018.

  38. Bloschock KP, and Bar-Cohen A (2012) "Advanced thermal management technologies for defense electronics." In Defense transformation and net-centric systems 2012, vol. 8405, pp. 157–168. SPIE, 2012.

  39. Baig Z, Mamat O, Mustapha M (2018) Recent progress on the dispersion and the strengthening effect of carbon nanotubes and graphene-reinforced metal nanocomposites: a review. Crit Rev Solid State Mater Sci 43(1):1–46

    Article  CAS  ADS  Google Scholar 

  40. Parveez B, Maleque MA, Jamal NA (2021) Influence of agro-based reinforcements on the properties of aluminum matrix composites: a systematic review. J Mater Sci 56(29):16195–16222

    Article  CAS  ADS  Google Scholar 

  41. Kumar D, Angra S, Singh S (2022) Mechanical properties and wear behaviour of stir cast aluminum metal matrix composite: a review. Int J Eng 35(4):794–801

    Article  Google Scholar 

  42. Raabe D et al (2022) Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Progress Mater Sci 128:100947

    Article  CAS  Google Scholar 

  43. Ashby MF (2022). Materials and sustainable development. Butterworth-Heinemann.

  44. Gupta A, Basu B (2019) Sustainable primary aluminium production: technology status and future opportunities. Trans Indian Inst Met 72:2135–2150

    Article  CAS  Google Scholar 

  45. Ashby MF (2012) Materials and the environment: eco-informed material choice. Elsevier, 2012.

  46. Gaustad G, Olivetti E, Kirchain R (2012) Improving aluminum recycling: a survey of sorting and impurity removal technologies. Resour Conserv Recycl 58:79–87

    Article  Google Scholar 

  47. Pandiyan A, Veeramuthu L, Yan ZL, Lin YC, Tsai CH, Chang ST & Kuo CC (2023). A comprehensive review on perovskite and its functional composites in smart textiles: Progress, challenges, opportunities, and future directions. Prog Mater Sci, 101206.

  48. Yang J, Shen X, Yang W, Kim JK (2023) Templating strategies for 3D-structured thermally conductive composites: recent advances and thermal energy applications. Prog Mater Sci 133:101054

    Article  CAS  Google Scholar 

  49. Efthymiou E, Cöcen ÖN, Ermolli SR (2010) Sustainable aluminium systems. Sustainability 2(9):3100–3109

    Article  CAS  Google Scholar 

  50. Elmasry A, Azoti W, El-Safty SA, Elmarakbi A (2023) A comparative review of multiscale models for effective properties of nano-and micro-composites. Prog Mater Sci 132:101022

    Article  CAS  Google Scholar 

  51. Yang H, Yang L, Yang Z, Shan Y, Gu H, Ma J, & Wu Z (2023). Ultrasonic detection methods for mechanical characterization and damage diagnosis of advanced composite materials: A review. Composite Structures, 117554.

  52. Sun Z, Luo Y, Chen C, Dong Z, Jiang G, Chen F, & Ma P (2023). Mechanical enhancement of carbon fiber-reinforced polymers: from interfacial regulating strategies to advanced processing technologies. Progress Mater Sci, 101221.

  53. Clyne TW (1995) and Philip John Withers. An introduction to metal matrix composites. Cambridge university press.

  54. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc Royal Soc London Ser A Math Phys Sci 241(1226):376–396

    MathSciNet  ADS  Google Scholar 

  55. Cyriac A (2011) James. History, status, factors and future. Oklahoma State University, Metal matrix composites

    Google Scholar 

  56. Miracle DB, and Hunt WH (2004) "Automotive applications of metal matrix composites." Aluminium Consultant Group Inc : 1029–1032.

  57. Nash P, Zhao N (2020) 1000 at 1000: particulate-reinforced metal matrix composites. J Mater Sci 55(34):16059–16062

    Article  CAS  ADS  Google Scholar 

  58. Reddy MP, Shakoor RA, Parande G, Manakari V, Ubaid F, Mohamed AMA, Gupta M (2017) Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Progress Natl Sci: Mater Int 27(5):606–614

    Article  CAS  Google Scholar 

  59. Kumar A, Singh RC, Chaudhary R (2020) Recent progress in production of metal matrix composites by stir casting process: an overview. Mater Today Proc 21:1453–1457

    Article  CAS  Google Scholar 

  60. Jagadeesh GV, Setti SG (2020) A review on micromechanical methods for evaluation of mechanical behavior of particulate reinforced metal matrix composites. J Mater Sci 55:9848–9882

    Article  CAS  ADS  Google Scholar 

  61. Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS (2000) Recent development in aluminium alloys for aerospace applications. Mater Sci Eng, A 280(1):102–107

    Article  Google Scholar 

  62. Surappa MK (2003) Aluminium matrix composites: challenges and opportunities. Sadhana 28(1):319–334

    Article  CAS  Google Scholar 

  63. Jayakumar J, Raghunath BK, Rao TH (2012) Recent development and challenges in synthesis of magnesium matrix nano composites—a review. Int J Latest Res Sci Technol 1:164–171

    Google Scholar 

  64. Ye HZ, Liu XY (2004) Review of recent studies in magnesium matrix composites. J Mater Sci 39(20):6153–6171

    Article  CAS  ADS  Google Scholar 

  65. Saravanan RA, Surappa MK (2000) Fabrication and characterisation of pure magnesium-30 vol.% SiCP particle composite. Mater Sci Eng, A 276(1–2):108–116

    Article  Google Scholar 

  66. Alam SN, Singh H (2014) Development of copper-based metal matrix composites: an analysis by SEM, EDS and XRD. Microscopy Anal 28(4):8–13

    Google Scholar 

  67. Chaudhary N, Singh S (2023) Experimental investigation on microstructural and mechanical properties of in situ SiC-reinforced friction stir spot weld of Al 6061–T6. J Mater Sci 58(4):1849–1868

    Article  CAS  ADS  Google Scholar 

  68. Singh M, Mondal DP, Jha AK, Das S, Yegneswaran AH (2001) Preparation and properties of cast aluminium alloy–sillimanite particle composite. Compos A Appl Sci Manuf 32(6):787–795

    Article  Google Scholar 

  69. Ramnath BV, Elanchezhian C, Jaivignesh M, Rajesh S, Parswajinan C, Siddique Ahmed Ghias A (2014) Evaluation of mechanical properties of aluminium alloy–alumina–boron carbide metal matrix composites. Mater Design 58:332–338

    Article  Google Scholar 

  70. Reddy P, Subramanya RK, Vijaya Ramnath B (2018) Investigation of mechanical properties of aluminium 6061-silicon carbide, boron carbide metal matrix composite. SILICON 10(2):495–502

    Article  CAS  Google Scholar 

  71. Samal P, Vundavilli PR, Meher A, Mahapatra MM (2020) Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. J Manuf Process 59:131–152

    Article  Google Scholar 

  72. Macke A, Schultz BF, Rohatgi P (2012) Metal matrix composites. Adv Mater Processes 170(3):19–23

    CAS  Google Scholar 

  73. Rambabu PPNKV, Eswara Prasad N, Kutumbarao VV, and Wanhill RJH (2017) "Aluminium alloys for aerospace applications." Aerospace Mater Mater Technol 29–52.

  74. Li XN, Li PY, Liu ZQ, Ma K, Liu ZY, Xiao BL, Ma ZY (2023) Microstructure and mechanical properties of Ti3AlC2 reinforced Al–4.5 Cu–1.5 Mg composites fabricated by powder metallurgy. J Mater Sci 58(6):2570–2580

    Article  CAS  ADS  Google Scholar 

  75. Surappa MK (2008) Synthesis of fly ash particle reinforced A356 Al composites and their characterization. Mater Sci Eng, A 480(1–2):117–124

    Google Scholar 

  76. Shivamurthy RC, Surappa MK (2011) Tribological characteristics of A356 Al alloy–SiCP composite discs. Wear 271(9–10):1946–1950

    Article  CAS  Google Scholar 

  77. Nagarajan S, Dutta B, Surappa MK (1999) The effect of SiC particles on the size and morphology of eutectic silicon in cast A356/SiCp composites. Compos Sci Technol 59(6):897–902

    Article  CAS  Google Scholar 

  78. Zhou X, Gao Y, Wang Y, Xiao P (2023) Comparison of mechanical properties of 2024Al composites strengthened with the carbon fibers and/or ZrC particles. J Mater Sci 58(19):7930–7947

    Article  CAS  ADS  Google Scholar 

  79. Kok M (2005) Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. J Mater Process Technol 161(3):381–387

    Article  CAS  ADS  Google Scholar 

  80. Gopalakrishnan S, Murugan N (2012) Production and wear characterisation of AA 6061 matrix titanium carbide particulate reinforced composite by enhanced stir casting method. Compos B Eng 43(2):302–308

    Article  CAS  Google Scholar 

  81. Gupta M, Surappa MK, Qin S (1997) Effect of interfacial characteristics on the failure-mechanism mode of a SiC reinforced A1 based metal-matrix composite. J Mater Process Technol 67(1–3):94–99

    Article  Google Scholar 

  82. Yang C, Wu S, Wu S, Liu X, Zhao Z (2022) In-situ characterization on crack propagation behavior of SiCf/SiC composites during monotonic tensile loading. J Eur Ceram Soc 42(15):6836–6845

    Article  CAS  Google Scholar 

  83. Soundararajan R, Ramesh A, Sivasankaran S, and Sathishkumar A (2015) "Modeling and analysis of mechanical properties of aluminium alloy (A413) processed through squeeze casting route using artificial neural network model and statistical technique." Adv Mater Sci Eng 2015.

  84. Ji P, Yang Z, Zhang J, Zheng L, Ji V, Klosek V (2015) Residual stress distribution and microstructure in the friction stir weld of 7075 aluminum alloy. J Mater Sci 50:7262–7270

    Article  CAS  ADS  Google Scholar 

  85. Vishwakarma P, Mishra PMS, Mishra PM (2019) Effect of reinforcement and volume fraction on mechanical behaviour of AA7075/B4C/fly-ash MMCp. Int. J. Eng. Adv. Technol 8:2249–8958

    Google Scholar 

  86. Pu B, Lin X, Li B, Chen X, He C, Zhao N (2020) Effect of SiC nanoparticles on the precipitation behavior and mechanical properties of 7075Al alloy. J Mater Sci 55:6145–6160

    Article  CAS  ADS  Google Scholar 

  87. Pul M, Erdem U, Turkoz MB, Yildirim G (2023) The effect of sintering parameters and MgO ratio on structural properties in Al7075/MgO composites: a review. J Mater Sci 58(2):664–684

    Article  CAS  ADS  Google Scholar 

  88. Sajjadi SA, Ezatpour HR, Torabi Parizi M (2012) Comparison of microstructure and mechanical properties of A356 aluminum alloy/Al2O3 composites fabricated by stir and compo-casting processes. Mater Design 34:106–111

    Article  CAS  Google Scholar 

  89. Shankar G, Jayashree PK, Kini AU, and Sharma SS (2014) "Effect of silicon oxide (SiO2) reinforced Particles on ageing behavior of AI-2024 Alloy." 140–144.

  90. Ravichandran M, Dineshkumar S (2014) Synthesis of Al-TiO2 composites through liquid powder metallurgy route. Int J Mech Eng 1(1):12–15

    Article  Google Scholar 

  91. Muralidharan N, Chockalingam K, Kalaiselvan K, and Nithyavathy N (2022) Investigation of ZrO2 reinforced aluminium metal matrix composites by liquid metallurgy route." Adv Mater Process Technolog: 1–15.

  92. Kundu S, Hussain M, Kumar V, Kumar S, Das AK (2018) Direct metal laser sintering of TiN reinforced Ti6Al4V alloy based metal matrix composite: fabrication and characterization. Int J Adv Manuf Technol 97:2635–2646

    Article  Google Scholar 

  93. Kumar SA, Vignesh JA, Joshua SP (2021) Investigating the effect of porosity on aluminium 7075 alloy reinforced with silicon nitride (Si3N4) metal matrix composites through STIR casting process. Mater Today Proc 39:414–419

    Article  Google Scholar 

  94. Kvashnin DG, Firestein KL, Popov ZI, Corthay S, Sorokin PB, Golberg DV, Shtansky DV (2019) Al− BN interaction in a high-strength lightweight Al/BN metal-matrix composite: theoretical modelling and experimental verification. J Alloy Compd 782:875–880

    Article  CAS  Google Scholar 

  95. Veeravalli RR, Nallu R, Mohiuddin SMM (2016) Mechanical and tribological properties of AA7075–TiC metal matrix composites under heat treated (T6) and cast conditions. J Mater Res Technol 5(4):377–383

    Article  CAS  Google Scholar 

  96. Chen B, KatsuyoshiKondoh LJS, Li JS, Qian MJCPBE (2020) Extraordinary reinforcing effect of carbon nanotubes in aluminium matrix composites assisted by in-situ alumina nanoparticles. Compos Part B: Eng 183:107691

    Article  CAS  Google Scholar 

  97. Kumar A, Singh RC, Chaudhary R, and Singh VP. "Tribological studies and microstructural characterisation of SiC and fly ash particles based aluminium 2024 alloy composites prepared through stir casting route." In IOP conference series: materials science and engineering, vol. 804, no. 1, p. 012025. IOP Publishing, 2020.

  98. Senapati AK, Mishra PC, Routara BC (2014) Use of waste flyash in fabrication of aluminium alloy matrix composite. Int J Eng Technol 6(2):905–912

    CAS  Google Scholar 

  99. Panwar N, and Chauhan A (2014) "Development of aluminum composites using Red mud as reinforcement-a review." 2014 recent advances in engineering and computational sciences (raecs) 1–4.

  100. Yendapalli R, Kumar K, Shaik AH, Narahari VKR, Pramanik S, Bhaumik S (2022) Effect of reinforcements on graphite/titania/aluminium nanohybrid composites. Proc Inst Mech Eng Part J: J Eng Tribol 236(2):217–224

    Article  Google Scholar 

  101. Wu T, Fan R, Wu Y, Wu D, Yang J, and Chen M. (2023) "Microstructure, densification and mechanical properties of in situ TiBw/Ti2AlNb composites fabricated by spark plasma sintering." J Mater Sci 1–20.

  102. Rani BS, and Sahoo S (2002) A comparative analysis on physical and mechanical properties of aluminum composites with al2O3 and WS2 reinforcement." In Recent advances in mechanical engineering: select proceedings of ICRAMERD 2021, pp. 597–603. Singapore: Springer Nature Singapore, 2022.

  103. Das S, Dan TK, Prasad SV, Rohatgi PK (1986) Aluminium alloy—rice husk ash particle composites. J Mater Sci Lett 5(5):562–564

    Article  CAS  Google Scholar 

  104. Madakson PB, Yawas DS, Apasi A (2012) Characterization of coconut shell ash for potential utilization in metal matrix composites for automotive applications. Int J Eng Sci Technol 4(3):1190–1198

    Google Scholar 

  105. Weber, Ludger, and Reza Tavangar. "Diamond-based metal matrix composites for thermal management made by liquid metal infiltration—potential and limits." In Advanced materials research, vol. 59, pp. 111–115. Trans Tech Publications Ltd, 2009.

  106. Dasgupta R (2012) "Aluminium alloy-based metal matrix composites: a potential material for wear resistant applications." Int Schol Res Not 2012.

  107. Rao TB (2021) Microstructural, mechanical, and wear properties characterization and strengthening mechanisms of Al7075/SiCnp composites processed through ultrasonic cavitation assisted stir-casting. Mater Sci Eng: A 805:140553

    Article  CAS  Google Scholar 

  108. Lü S, Pan Xiao Du, Yuan KH, Shusen Wu (2018) Preparation of Al matrix nanocomposites by diluting the composite granules containing nano-SiCp under ultrasonic vibaration. J Mater Sci Technol 34(9):1609–1617

    Article  Google Scholar 

  109. Yang Y, Lan J, Li X (2004) Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy. Mater Sci Eng, A 380(1–2):378–383

    Article  Google Scholar 

  110. Yuan Du, Kun Hu, Lü S, Shusen Wu, Gao Qi (2018) Preparation and properties of nano-SiCp/A356 composites synthesised with a new process. Mater Sci Technol 34(12):1415–1424

    Article  CAS  ADS  Google Scholar 

  111. Razavi M, Farajipour AR, Zakeri M, Rahimipour MR, Firouzbakht AR (2017) Production of Al2O3–SiC nano-composites by spark plasma sintering. Boletín de la Sociedad Española de Cerámica y Vidrio 56(4):186–194

    Article  CAS  Google Scholar 

  112. Han Q, Setchi R, Evans SL (2016) Synthesis and characterisation of advanced ball-milled Al-Al2O3 nanocomposites for selective laser melting. Powder Technol 297:183–192

    Article  CAS  Google Scholar 

  113. Zhang X, Liang S, Li H, Yang J (2017) Mechanical and optical properties of transparent alumina obtained by rapid vacuum sintering. Ceram Int 43(1):420–426

    Article  CAS  Google Scholar 

  114. Oghbaei M, Mirzaee O (2010) Microwave versus conventional sintering: A review of fundamentals, advantages and applications. J Alloy Compd 494(1–2):175–189

    Article  CAS  Google Scholar 

  115. Zhou C, Xiaoyu Wu, Ngai TL, Li L, Ngai S, Chen Z (2018) Al alloy/Ti3SiC2 composites fabricated by pressureless infiltration with melt-spun Al alloy ribbons. Ceram Int 44(6):6026–6032

    Article  CAS  Google Scholar 

  116. Yang W, Zhao Q, Xin L, Qiao J, Zou J, Shao P, Zhenhe Yu, Zhang Q, Gaohui Wu (2018) Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method. J Alloy Compd 732:748–758

    Article  CAS  Google Scholar 

  117. Lichtenberg K, Weidenmann KA (2017) Effect of reinforcement size and orientation on the thermal expansion behavior of metallic glass reinforced metal matrix composites produced by gas pressure infiltration. Thermochim Acta 654:85–92

    Article  CAS  Google Scholar 

  118. Le-hua QI, Zheng WQ, Zhou JM, Juy LY (2013) Effect of specific pressure on fabrication of 2D-Cf/Al composite by vacuum and pressure infiltration. Transact Nonferrous Metals Soc China 23(7):1915–1921

    Article  Google Scholar 

  119. Rohatgi PK, Weiss D, Gupta N (2006) Applications of fly ash in synthesizing low-cost MMCs for automotive and other applications. JOM 58:71–76

    Article  CAS  Google Scholar 

  120. Adelakin TK, Suárez OM (2011) Study of boride-reinforced aluminum matrix composites produced via centrifugal casting. Mater Manuf Process 26(2):338–345

    Article  CAS  Google Scholar 

  121. Venkatesan S, Anthony Xavior M (2018) Tensile behavior of aluminum alloy (AA7050) metal matrix composite reinforced with graphene fabricated by stir and squeeze cast processes. Sci Technol Mater 30(2):74–85

    Article  Google Scholar 

  122. Yu LI, Li QL, Dong LI, Wei LIU, Shu GG (2016) Fabrication and characterization of stir casting AA6061—31% B4C composite. Transact Nonferrous Metals Soc China 26(9):2304–2312

    Article  Google Scholar 

  123. Kumarasamy SP, Vijayananth K, Thankachan T, Muthukutti GP (2017) Investigations on mechanical and machinability behavior of aluminum/flyashcenosphere/Gr hybrid composites processed through compocasting. J Appl Res Technol 15(5):430–441

    Article  Google Scholar 

  124. Curle UA, Ivanchev L (2010) Wear of semi-solid rheocastSiCp/Al metal matrix composites. Transact Nonferrous Metals Soc China 20:s852–s856

    Article  Google Scholar 

  125. Liu X, Liu Y, Huang D, Han Q, Wang X (2017) Tailoring in-situ TiB2 particulates in aluminum matrix composites. Mater Sci Eng, A 705:55–61

    Article  CAS  Google Scholar 

  126. Kaur K, Pandey OP (2010) Microstructural characteristics of spray formed zircon sand reinforced LM13 composite. J Alloys Compounds 503(2):410–415

    Article  CAS  Google Scholar 

  127. Seleman MMES, Ahmed MM, Ataya S (2018) Microstructure and mechanical properties of hot extruded 6016 aluminum alloy/graphite composites. J Mater Sci Technol 34(9):1580–1591

    Article  CAS  Google Scholar 

  128. Jafarian H, Habibi-Livar J, Razavi SH (2015) Microstructure evolution and mechanical properties in ultrafine grained Al/TiC composite fabricated by accumulative roll bonding. Compos Part B Eng 77:84–92

    Article  CAS  Google Scholar 

  129. Bodukuri AK, Eswaraiah K, Rajendar K, Sampath V (2016) Fabrication of Al–SiC–B4C metal matrix composite by powder metallurgy technique and evaluating mechanical properties. Perspect Sci 8:428–431

    Article  Google Scholar 

  130. Nassar AE, Nassar EE (2017) Properties of aluminum matrix Nano composites prepared by powder metallurgy processing. J King Saud Univ-Eng Sci 29(3):295–299

    Google Scholar 

  131. Yu Z, Yang W, Zhou C, Zhang N, Chao Z, Cao Y, Sun Y, Shao P, Gaohui Wu (2019) Effect of ball milling time on graphene nanosheets reinforced Al6063 composite fabricated by pressure infiltration method. Carbon 141:25–39

    Article  CAS  Google Scholar 

  132. Issa HK, AboozarTaherizadeh AM, Ghaei A (2017) Development of an aluminum/amorphous nano-SiO2 composite using powder metallurgy and hot extrusion processes. Ceram Int 43(17):14582–14592

    Article  CAS  Google Scholar 

  133. Kwon H, Mondal J, AlOgab KA, Sammelselg V, Takamichi M, Kawaski A, Leparoux M (2017) Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy. J Alloys Compounds 698:807–813

    Article  CAS  Google Scholar 

  134. Gürbüz M, Şenel MC, Koç E (2018) The effect of sintering time, temperature, and graphene addition on the hardness and microstructure of aluminum composites. J Compos Mater 52(4):553–563

    Article  Google Scholar 

  135. Niteesh Kumar SJ, Keshavamurthy R, Haseebuddin MR, Koppad PG (2017) Mechanical properties of aluminium-graphene composite synthesized by powder metallurgy and hot extrusion. Transact Indian Inst Metals 70:605–613

    Article  CAS  Google Scholar 

  136. Pérez-Bustamante R, Bolaños-Morales D, Bonilla-Martínez J, Estrada-Guel I, Martínez-Sánchez R (2014) Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J Alloy Compd 615:S578–S582

    Article  Google Scholar 

  137. Leißner T, Diener A, Löwer E, Ditscherlein R, Krüger K, Kwade A, Peuker UA (2020) 3D ex-situ and in-situ X-ray CT process studies in particle technology–a perspective. Adv Powder Technol 31(1):78–86

    Article  Google Scholar 

  138. Rokkala U, Bontha S, Ramesh MR, Balla VK (2023) Influence of friction stir processing on microstructure, mechanical properties and corrosion behaviour of Mg-Zn-Dy alloy. J Mater Sci 58(6):2893–2914

    Article  CAS  ADS  Google Scholar 

  139. Khodabakhshi F, Nosko M, Gerlich AP (2018) Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction-stir processing. Surf Coat Technol 335:288–305

    Article  CAS  Google Scholar 

  140. Rana H, Badheka V (2018) Influence of friction stir processing conditions on the manufacturing of Al-Mg-Zn-Cu alloy/boron carbide surface composite. J Mater Process Technol 255:795–807

    Article  CAS  Google Scholar 

  141. Khodabakhshi F, Arab SM, Švec P, Gerlich AP (2017) Fabrication of a new Al-Mg/graphene nanocomposite by multi-pass friction-stir processing: dispersion, microstructure, stability, and strengthening. Mater Charact 132:92–107

    Article  CAS  Google Scholar 

  142. Heidarzadeh A, Mironov S, Kaibyshev R, Çam G, Aude Simar A, Gerlich FK et al (2021) Friction stir welding/processing of metals and alloys: a comprehensive review on microstructural evolution. Progress Mater Sci 117:100752

    Article  CAS  Google Scholar 

  143. Khodabakhshi F, Gerlich AP, Švec P (2017) Fabrication of a high strength ultra-fine grained Al-Mg-SiC nanocomposite by multi-step friction-stir processing. Mater Sci Eng, A 698:313–325

    Article  CAS  Google Scholar 

  144. Orłowska M, Pixner F, Hütter A, Enzinger N, Olejnik L, Lewandowska M (2022) Manufacturing of coarse and ultrafine-grained aluminum matrix composites reinforced with Al2O3 nanoparticles via friction stir processing. J Manuf Process 80:359–373

    Article  Google Scholar 

  145. Khan M, Rehman A, Aziz T, Shahzad M, Naveed K, Subhani T (2018) Effect of inter-cavity spacing in friction stir processed Al 5083 composites containing carbon nanotubes and boron carbide particles. J Mater Process Technol 253:72–85

    Article  CAS  Google Scholar 

  146. Dinaharan I (2016) Influence of ceramic particulate type on microstructure and tensile strength of aluminum matrix composites produced using friction stir processing. J Asian Ceram Soc 4(2):209–218

    Article  Google Scholar 

  147. Dinaharan I, Kalaiselvan K, Murugan N (2017) Influence of rice husk ash particles on microstructure and tensile behavior of AA6061 aluminum matrix composites produced using friction stir processing. Compos Commun 3:42–46

    Article  Google Scholar 

  148. Yuvaraj N, Aravindan S (2015) Fabrication of Al5083/B4C surface composite by friction stir processing and its tribological characterization. J Market Res 4(4):398–410

    CAS  Google Scholar 

  149. Huang G, Hou W, Shen Y (2018) Evaluation of the microstructure and mechanical properties of WC particle reinforced aluminum matrix composites fabricated by friction stir processing. Mater Charact 138:26–37

    Article  CAS  Google Scholar 

  150. Maurya R, Binit Kumar S, Ariharan JR, Balani K (2016) Effect of carbonaceous reinforcements on the mechanical and tribological properties of friction stir processed Al6061 alloy. Mater Design 98:155–166

    Article  CAS  Google Scholar 

  151. Hamdollahzadeh A, Bahrami M, FarahmandNikoo M, Yusefi A, Besharati Givi MK, Parvin N (2015) Microstructure evolutions and mechanical properties of nano-SiC-fortified AA7075 friction stir weldment: The role of second pass processing. J Manuf Process 20:367–373

    Article  Google Scholar 

  152. Rana HG, Badheka VJ, Kumar A (2016) Fabrication of Al7075/B4C surface composite by novel friction stir processing (FSP) and investigation on wear properties. Procedia Technol 23:519–528

    Article  Google Scholar 

  153. Fouladi S, Abbasi M (2017) The effect of friction stir vibration welding process on characteristics of SiO2 incorporated joint. J Mater Process Technol 243:23–30

    Article  CAS  Google Scholar 

  154. García-Vázquez F, Vargas-Arista B, Muñiz R, Ortiz JC, García HH, Acevedo J (2016) The role of friction stir processing (FSP) parameters on TiC reinforced surface Al7075-T651 aluminum alloy. Soldagem&Inspeção 21:508–516

    Google Scholar 

  155. Zhang B, Huang H, Wu S, Li W, Huang J, Lin A, Xiao T (2021) In-situ X-ray tomography on permeability evolution of C/SiC porous ceramic for hypersonic vehicles. Ceram Int 47(19):27770–27777

    Article  CAS  Google Scholar 

  156. Arab SM, Karimi S, Jahromi SAJ, Javadpour S, Zebarjad SM (2015) Fabrication of novel fiber reinforced aluminum composites by friction stir processing. Mater Sci Eng A 632:50–57

    Article  CAS  Google Scholar 

  157. Nazari M, Eskandari H, Khodabakhshi F (2019) Production and characterization of an advanced AA6061-Graphene-TiB2 hybrid surface nanocomposite by multi-pass friction stir processing. Surf Coat Technol 377:124914

    Article  CAS  Google Scholar 

  158. Surekha K, Murty BS, Prasad Rao K (2009) Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy. Solid State Sci 11(4):907–917

    Article  CAS  ADS  Google Scholar 

  159. Shahraki S, Khorasani S, Behnagh RA, Fotouhi Y, Hosein B (2013) Producing of AA5083/ZrO 2 nanocomposite by friction stir processing (FSP). Metall Mater Transact B 44:1546–1553

    Article  CAS  ADS  Google Scholar 

  160. Kalyanamanohar V, and Gireesh Chandra Appalachari D, "Parameter optimization and evaluation of mechanical and thermal properties of nanographene reinforced Al 6060 surface composite using FSP." In AIP Conference Proceedings, 1943(1), 020052. AIP Publishing LLC, 2018.

  161. Lim DK, Shibayanagi T, Gerlich AP (2009) Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Mater Sci Eng, A 507(1–2):194–199

    Article  Google Scholar 

  162. Rathee S, Maheshwari S, Siddiquee AN, Srivastava M, Sharma SK (2016) Process parameters optimization for enhanced microhardness of AA 6061/SiC surface composites fabricated via friction stir processing (FSP). Mater Today Proc 3(10):4151–4156

    Article  Google Scholar 

  163. Montazerian MH, Movahedi M, Jondi MR (2019) Effect of graphene and process parameters on mechanical performance and electrical resistance of aluminum to copper friction stir joint. Mater Res Express 6(4):046561

    Article  ADS  Google Scholar 

  164. Izadi H, Gerlich AP (2012) Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites. Carbon 50(12):4744–4749

    Article  CAS  Google Scholar 

  165. Jayabalakrishnan D, Balasubramanian M (2018) Eccentric-weave FSW between Cu and AA 6061–T6 with reinforced graphene nanoparticles. Mater Manuf Process 33(3):333–342

    Article  CAS  Google Scholar 

  166. Rohatgi PK, Asthana R, Das S (1986) Solidification, structures, and properties of cast metal-ceramic particle composites. Int Metals Rev 31(1):115–139

    CAS  Google Scholar 

  167. Kala H, Mer KKS, Kumar S (2014) A review on mechanical and tribological behaviors of stir cast aluminum matrix composites. Procedia Mater Sci 6:1951–1960

    Article  CAS  Google Scholar 

  168. Wu Z, Wu S, Qian W, Zhang H, Zhu H, Chen Q, and Withers PJ (2023). Structural integrity issues of additively manufactured railway components: progress and challenges. Eng Failure Anal, 107265.

  169. Ziaei H, Fan G, Tan Z, Zhang Y, Zhao L, Li Z. & Li Z (2023) SiO2 coating on CNTs to fabricate the Al4O4C-Al composite with superior Young's modulus. Mater Charact, 113597.

  170. Yu H, Li K, Lu J, and Zhao Z (2023). Effect of SiC nanowires on ablation property of Cu-doped C/C-ZrC composites. Corrosion Sci, 111732.

  171. Tee KL, Lu L, Lai MO (1999) In situ processing of Al–TiB2 composite by the stir-casting technique. J Mater Process Technol 89:513–519

    Article  Google Scholar 

  172. Hashim J, Looney L, Hashmi MSJ (1999) Metal matrix composites: production by the stir casting method. J Mater Process Technol 92:1–7

    Article  Google Scholar 

  173. Moses JJ, Dinaharan I, Joseph Sekhar S (2016) Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminum matrix composites produced using stir casting. Transact Nonferrous Metals Soc China 26(6):1498–1511

    Article  CAS  Google Scholar 

  174. Kumar BP, Birru AK (2017) Microstructure and mechanical properties of aluminium metal matrix composites with addition of bamboo leaf ash by stir casting method. Transact Nonferrous Metals Soc China 27(12):2555–2572

    Article  CAS  Google Scholar 

  175. Liu H, Li L, Wang Y, Zhou Y, Ai Y, Yang J, Liu S (2024) In situ damage propagation and fracture in notched cross-ply SiC/SiC composites: experiment and numerical modeling. J Eur Ceram Soc 44(4):2052–2064

    Article  CAS  Google Scholar 

  176. Degirmenci U, and Yildiz YO (2023). Examination of mechanical behaviour of fullerene doped aluminium matrix composite produced by sintering process. Mater Today Commun, 107916.

  177. Verma PK, Singh A (2024) Mechanical and dry sliding tribological characteristics of aluminium matrix composite reinforced with high entropy alloy particles. Tribol Int 191:109055

    Article  CAS  Google Scholar 

  178. Mermerdaş K, Manguri S, Nassani DE, Oleiwi SM (2017) Effect of aggregate properties on the mechanical and absorption characteristics of geopolymer mortar. Eng Sci Technol Int J 20(6):1642–1652

    Google Scholar 

  179. Chen F, Chen Z, Mao F, Wang T, Cao Z (2015) TiB2 reinforced aluminum based in situ composites fabricated by stir casting. Mater Sci Eng, A 625:357–368

    Article  CAS  Google Scholar 

  180. Singh R, Singh G (2015) Investigations of Al–SiC AMC prepared by vacuum moulding assisted stir casting. J Manuf Process 19:142–147

    Article  Google Scholar 

  181. Zhang XN, Geng L, Wang GS (2006) Fabrication of Al-based hybrid composites reinforced with SiC whiskers and SiC nanoparticles by squeeze casting. J Mater Process Technol 176(1–3):146–151

    Article  CAS  Google Scholar 

  182. Manu KMS, Sreeraj K, Rajan TPD, Shereema RM, Pai BC, Arun B (2015) Structure and properties of modified compocastmicrosilica reinforced aluminum matrix composite. Mater Design 88:294–301

    Article  Google Scholar 

  183. Goh CS, Soh KS, Oon PH, Chua BW (2010) Effect of squeeze casting parameters on the mechanical properties of AZ91–Ca Mg alloys. Mater Des 31:S50–S53

    Article  CAS  Google Scholar 

  184. Kannan C, Ramanujam R (2017) Comparative study on the mechanical and microstructural characterisation of AA 7075 nano and hybrid nanocomposites produced by stir and squeeze casting. J Adv Res 8(4):309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Liu G, Wang Q, Liu T, Ye B, Jiang H, Ding W (2017) Effect of T6 heat treatment on microstructure and mechanical property of 6101/A356 bimetal fabricated by squeeze casting. Mater Sci Eng, A 696:208–215

    Article  CAS  Google Scholar 

  186. Baghi M, Niroumand B, Emadi R (2017) Fabrication and characterization of squeeze cast A413-CSF composites. J Alloy Compd 710:29–36

    Article  CAS  Google Scholar 

  187. El-Labban HF, Abdelaziz M, Mahmoud ERI (2016) Preparation and characterization of squeeze cast-Al–Si piston alloy reinforced by Ni and nano-Al2O3 particles. J King Saud Univ-Eng Sci 28(2):230–239

    Google Scholar 

  188. Hajjari E, Divandari M, Mirhabibi AR (2010) The effect of applied pressure on fracture surface and tensile properties of nickel coated continuous carbon fiber reinforced aluminum composites fabricated by squeeze casting. Mater Design 31(5):2381–2386

    Article  CAS  Google Scholar 

  189. Xu W, XuezeJin WX, Zeng X, Shan D (2018) Study on hot deformation behavior and workability of squeeze-cast 20 vol% SiCw/6061Al composites using processing map. Mater Charact 135:154–166

    Article  CAS  Google Scholar 

  190. Yang C, Zong Y, Zheng Z, Shan D (2014) Experimental and theoretical investigation on the compressive behavior of aluminum borate whisker reinforced 2024Al composites. Mater Charact 96:84–92

    Article  CAS  Google Scholar 

  191. Alhashmy HA, Nganbe M (2015) Laminate squeeze casting of carbon fiber reinforced aluminum matrix composites. Mater Design 67:154–158

    Article  CAS  Google Scholar 

  192. Jojith R, Radhika N, Saleh B (2022) Metallographic, mechanical and reciprocating wear characterization and behavioural studies of untreated and T6 treated Al2O3/Al7Si0. 3Mg functional composite material. Tribol Int 174:107693

    Article  Google Scholar 

  193. Bembalge OB, Panigrahi SK (2018) Development and strengthening mechanisms of bulk ultrafine grained AA6063/SiC composite sheets with varying reinforcement size ranging from nano to micro domain. J Alloy Compd 766:355–372

    Article  CAS  Google Scholar 

  194. Sambathkumar M, Navaneethakrishnan P, Ponappa KSKS, Sasikumar KSK (2017) Mechanical and corrosion behavior of Al7075 (hybrid) metal matrix composites by two step stir casting process. Latin Am J Solids Struct 14:243–255

    Article  Google Scholar 

  195. Radhika N, Sai Charan K (2017) Experimental analysis on three body abrasive wear behaviour of stir cast Al LM 25/TiC metal matrix composite. Transact Indian Inst Metals 70:2233–2240

    Article  CAS  Google Scholar 

  196. Kumar A, Singh RC, Chaudhary R (2022) Investigation of nano-Al2O3 and micro-coconut shell ash (CSA) reinforced AA7075 hybrid metal-matrix composite using two-stage stir casting. Arab J Sci Eng 47(12):15559–15573

    Article  CAS  Google Scholar 

  197. Pazhouhanfar Y, Eghbali B (2018) Microstructural characterization and mechanical properties of TiB2 reinforced Al6061 matrix composites produced using stir casting process. Mater Sci Eng A 710:172–180

    Article  CAS  Google Scholar 

  198. Srivastava N, Chaudhari GP (2016) Strengthening in Al alloy nano composites fabricated by ultrasound assisted solidification technique. Mater Sci Eng A 651:241–247

    Article  CAS  Google Scholar 

  199. Kumar A, Singh RC, and Chaudhary R (2022) "Investigation of Microstructure and Several Quality Characteristics of AA7075/Al2O3/Coconut Shell Ash Hybrid Nano Composite Prepared through Ultrasonic Assisted Stir-Casting. J Mater Eng Perform. 1–16.

  200. Amouri K, Momeni SA, Kazazi M (2016) Microstructure and mechanical properties of Al-nano/micro SiC composites produced by stir casting technique. Mater Sci Eng A 674(2016):569–578

    Article  CAS  Google Scholar 

  201. Uozumi H, Kobayashi K, Nakanishi K, Matsunaga T, Shinozaki K, Sakamoto H, Tsukada T, Masuda C, Yoshida M (2008) Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting. Mater Sci Eng, A 495(1–2):282–287

    Article  Google Scholar 

  202. Azari VN, Khosroshahi R, TaherzadehMousavian R (2013) Microstructural and mechanical properties of Al-45 wt% Cu reinforced with alumina nanoparticles by stir casting method. Int J Miner, Metall Mater 20(2013):978–985

    Google Scholar 

  203. Akbari MK, Baharvandi HR, Mirzaee O (2013) Nano-sized aluminum oxide reinforced commercial casting A356 alloy matrix: evaluation of hardness, wear resistance and compressive strength focusing on particle distribution in aluminum matrix. Compos Part B Eng 52(2013):262–268

    Article  Google Scholar 

  204. Yigezu B, Mahapatra MM, and Jha BK. Influence of reinforcement type on microstructure, hardness, and tensile properties of an aluminum alloy metal matrix composite. (2013).

  205. Kongshaug DR, Ferguson JB, Schultz BF, Rohatgi PK (2014) Reactive stir mixing of Al–Mg/Al 2 O 3np metal matrix nanocomposites: effects of Mg and reinforcement concentration and method of reinforcement incorporation. J Mater Sci 49:2106–2116

    Article  CAS  ADS  Google Scholar 

  206. Su H, Gao W, Feng Z, Lu Z (2012) Processing, microstructure and tensile properties of nano-sized Al2O3 particle reinforced aluminum matrix composites. Mater Design 36(2012):590–596

    Article  CAS  Google Scholar 

  207. Lakshmipathy J, Kulendran B (2014) Reciprocating wear behavior of 7075Al/SiC in comparison with 6061Al/Al2O3 composites. Int J Refract Metal Hard Mater 46:137–144

    Article  CAS  Google Scholar 

  208. Sekar K, Allesu K, Joseph MA (2014) Effect of T6 heat treatment in the microstructure and mechanical properties of A356 reinforced with nano Al2O3 particles by combination effect of stir and squeeze casting. Procedia Mater Sci 5:444–453

    Article  CAS  Google Scholar 

  209. Akbari M, Karbalaei OM, Baharvandi HR (2013) Fabrication and study on mechanical properties and fracture behavior of nanometric Al2O3 particle-reinforced A356 composites focusing on the parameters of vortex method. Mater Design 46:199–205

    Article  Google Scholar 

  210. Kumar GB, Veeresh P, Rao CS, Selvaraj N, Bhagyashekar MS (2010) Studies on Al6061-SiC and Al7075-Al2O3 metal matrix composites. J Miner Mater Charact Eng 9(1):43–55

    Google Scholar 

  211. Tahamtan S, Emamy M, Halvaee A (2014) Effects of reinforcing particle size and interface bonding strength on tensile properties and fracture behavior of Al-A206/alumina micro/nanocomposites. J Compos Mater 48(27):3331–3346

    Article  Google Scholar 

  212. Ezatpour HR, TorabiParizi M, Sajjadi SA, Ebrahimi GR, Chaichi A (2016) Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles. Mater Chem Phys 178:119–127

    Article  CAS  Google Scholar 

  213. Rana RS, Purohit R (2015) Development and analysis of Al-matrix nano composites fabricated by ultrasonic assisted squeeze casting process. Mater Today Proc 2(4–5):3697–3703

    Google Scholar 

  214. Balaji V, Sateesh N, Manzoor Hussain M (2015) Manufacture of aluminium metal matrix composite (Al7075-SiC) by stir casting technique. Mater Today: Proc 2(4–5):3403–3408

    CAS  Google Scholar 

  215. Dong P-Y, Zhao H-D, Chen F-F, Li J-W (2013) Microstructures and properties of A356–10% SiC particle composite castings at different solidification pressures. Transact Nonferrous Metals Soc China 23(8):2222–2228

    Article  CAS  Google Scholar 

  216. Gurusamy P, Balasivanandha Prabu S, Paskaramoorthy R (2015) Influence of processing temperatures on mechanical properties and microstructure of squeeze cast aluminum alloy composites. Mater Manuf Processes 30(3):367–373

    Article  CAS  Google Scholar 

  217. Xu H, Yan J, Zhiwu Xu, Zhang B, Yang S (2006) Interface structure changes during vibration liquid phase bonding of SiCp/A356 composites in air. Compos A Appl Sci Manuf 37(9):1458–1463

    Article  Google Scholar 

  218. Sahin I, Eker AA (2011) Analysis of microstructures and mechanical properties of particle reinforced AlSi7Mg2 matrix composite materials. J Mater Eng Perform 20:1090–1096

    Article  CAS  Google Scholar 

  219. Mazahery A, Shabani MO (2012) Nano-sized silicon carbide reinforced commercial casting aluminum alloy matrix: experimental and novel modeling evaluation. Powder Technol 217:558–565

    Article  CAS  Google Scholar 

  220. Vanarotti M, Shrishail P, Sridhar BR, Venkateswarlu K, Kori SA (2014) Study of mechanical properties and residual stresses on post wear samples of A356-SiC metal matrix composites. Procedia Mater Sci 5:873–882

    Article  CAS  Google Scholar 

  221. Reihani SMS (2006) Processing of squeeze cast Al6061–30vol% SiC composites and their characterization. Mater Design 27(3):216–222

    Article  Google Scholar 

  222. Kumar GB, Veeresh P, Rao CS, Selvaraj N (2012) "Mechanical and dry sliding wear behavior of Al7075 alloy-reinforced with SiC particles. J Compos Mater 46(10):1201–1209

    Article  CAS  Google Scholar 

  223. Gargatte S, Upadhye RR, Dandagi VS, Desai SR, Waghamode BS (2013) Preparation & characterization of Al-5083 alloy composites. J Miner Mater Charact Eng 1(01):8

    Google Scholar 

  224. Sakthivel A, Palaninathan R, Velmurugan R, Rao PR (2008) Production and mechanical properties of SiC p particle-reinforced 2618 aluminum alloy composites. J Mater Sci 43:7047–7056

    Article  CAS  ADS  Google Scholar 

  225. Rana RS, Purohit R, Soni VK, Das S (2015) Characterization of mechanical properties and microstructure of aluminium alloy-SiC composites. Mater Today Proc 2(4–5):1149–1156

    Article  CAS  Google Scholar 

  226. Sozhamannan GG, Balasivanandha PS, and Venkatagalapathy VSK (2012) Effect of processing paramters on metal matrix composites: stir casting process. Journal of Surface Engineered Materials and advanced technology 2012 (2012).

  227. Mazahery A, Shabani MO (2013) Application of the extrusion to increase the binding between the ceramic particles and the metal matrix: enhancement of mechanical and tribological properties. J Mater Sci Technol 29(5):423–428

    Article  CAS  Google Scholar 

  228. Mazahery A, Alizadeh M, Shabani MO (2012) Study of tribological and mechanical properties of A356–nano SiC composites. Transact Indian Inst Metals 65:393–398

    Article  CAS  Google Scholar 

  229. Harichandran R, Selvakumar N (2016) Effect of nano/micro B 4 C particles on the mechanical properties of aluminium metal matrix composites fabricated by ultrasonic cavitation-assisted solidification process. Arch Civil Mech Eng 16:147–158

    Article  Google Scholar 

  230. Mazahery A, Shabani MO, Rahimipour MR, Tofigh AA, Razavi M (2012) Effect of coated B4C reinforcement on mechanical properties of squeeze cast A356 composites. Kovove Mater 50(2):107–113

    Article  CAS  Google Scholar 

  231. Mazahery A, Shabani MO (2013) Existence of good bonding between coated B4C reinforcement and al matrix via semisolid techniques: enhancement of wear resistance and mechanical properties. Tribol Transact 56(3):342–348

    Article  CAS  Google Scholar 

  232. Mazahery A, Shabani MO (2012) Sol–gel coated B4C particles reinforced 2024 Al matrix composites. Proc Inst Mech Eng, Part L: J Mater: Design Appl 226(2):159–169

    CAS  Google Scholar 

  233. Mazahery A, Shabani MO, Salahi E, Rahimipour MR, Tofigh AA, Razavi M (2012) Hardness and tensile strength study on Al356–B4C composites. Mater Sci Technol 28(5):634–668

    Article  CAS  ADS  Google Scholar 

  234. Mazahery A, Shabani MO (2012) "Mechanical properties of squeeze-cast A356 composites reinforced with B 4 C particulates. J Mater Eng Perform 21:247–252

    Article  CAS  Google Scholar 

  235. Mazahery A, Alizadeh M, Shabani MO (2012) Wear of Al–Si alloys matrix reinforced with sol–gel coated particles. Mater Technol 27(2):180–185

    Article  CAS  ADS  Google Scholar 

  236. Seo Y-H, Kang C-G (1995) The effect of applied pressure on particle-dispersion characteristics and mechanical properties in melt-stirring squeeze-cast SiCp/Al composites. J Mater Process Technol 55(3–4):370–379

    Article  Google Scholar 

  237. Dao V, Zhao S, Lin W, Zhang C (2012) Effect of process parameters on microstructure and mechanical properties in AlSi9Mg connecting-rod fabricated by semi-solid squeeze casting. Mater Sci Eng, A 558:95–102

    Article  CAS  Google Scholar 

  238. Vijian P, Arunachalam VP (2007) Modelling and multi objective optimization of LM24 aluminium alloy squeeze cast process parameters using genetic algorithm. J Mater Process Technol 186(1–3):82–86

    Article  CAS  Google Scholar 

  239. Senthil P, Amirthagadeswaran KS (2012) Optimization of squeeze casting parameters for non symmetrical AC2A aluminium alloy castings through Taguchi method. J Mech Sci Technol 26:1141–1147

    Article  Google Scholar 

  240. Goyal H, Mandal N, Roy H, Mitra SK, Mondal B (2015) Multi response optimization for processing Al–SiCp composites: an approach towards enhancement of mechanical properties. Trans Indian Inst Met 68:453–463

    Article  CAS  Google Scholar 

  241. Su H, Gao W, Zhang H, Liu H, Lu J, and Lu Z (2010) Optimization of stirring parameters through numerical simulation for the preparation of aluminum matrix composite by stir casting process. J Manuf Sci Eng 132(6).

  242. Aydın F (2023) A review of recent developments in the corrosion performance of Aluminium matrix composites. J Alloys Compounds 169508.

  243. Hihara LH, Latanision RM (1994) Corrosion of metal matrix composites. Int Mater Rev 39(6):245–264

    Article  CAS  Google Scholar 

  244. Bodunrin MO, Alaneme KK, Chown LK (2015) Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J Mater Res Technol 4(4):434–445

    Article  CAS  Google Scholar 

  245. Turnbull A (1992) Review of corrosion studies on aluminium metal matrix composites. Br Corros J 27(1):27–35

    Article  CAS  Google Scholar 

  246. Kumar S, Kumar A, Vanitha C (2019) Corrosion behaviour of Al 7075/TiC composites processed through friction stir processing. Mater Today Proc 15:21–29

    Article  CAS  Google Scholar 

  247. Cananda Murthy C, Kumar Singh S (2015) Influence of TiC particulate reinforcement on the corrosion behaviour of Al 6061 metal matrix composites. Adv Mater Lett 6(7):633–640

    Article  Google Scholar 

  248. Akçamlı N, Küçükelyas B, Kaykılarlı C, Uzunsoy D (2019) Investigation of microstructural, mechanical and corrosion properties of graphene nanoplatelets reinforced Al matrix composites. Mater Res Express 6(11):115627

    Article  ADS  Google Scholar 

  249. Rashad M, Pan F, Huanhuan Hu, Asif M, Hussain S, She J (2015) Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Mater Sci Eng, A 630:36–44

    Article  CAS  Google Scholar 

  250. Sadeghi B, and Cavaliere P (2022), CNTs reinforced Al-based composites produced via modified flake powder metallurgy. J Mater Sci, 1–17.

  251. Turan ME, Sun Y, Aydin F, Zengin H, Turen Y, Ahlatci H (2018) Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites. Mater Chem Phys 218:182–188

    Article  CAS  Google Scholar 

  252. Hidalgo-Manrique P, Lei X, Ruoyu Xu, Zhou M, Kinloch IA, Young RJ (2019) Copper/graphene composites: a review. J Mater Sci 54:12236–12289

    Article  CAS  ADS  Google Scholar 

  253. Dayanand S, Boppana SB, Hemanth J, Telagu A (2019) Microstructure and corrosion characteristics of in situ aluminum diboride metal matrix composites. J Bio- Tribo-Corros 5:1–10

    Article  Google Scholar 

  254. Kakitani R, Carrara AP, Mariani FE, Veríssimo NC, Casteletti LC, Garcia A, and Cheung N (2023) Tensile, wear, and corrosion behaviors of an in situ Al–Al3Ni metal matrix composite solidified under different cooling rates. J Mater Sci 1–19.

  255. Nguyen TH, Foley RT (1979) On the mechanism of pitting of aluminum. J Electrochem Soc 126(11):1855

    Article  Google Scholar 

  256. Nie J, Wang F, Chen Y, Mao Q, Yang H, Song Z, Liu X, Zhao Y (2019) Microstructure and corrosion behavior of Al-TiB2/TiC composites processed by hot rolling. Results in Physics 14:102471

    Article  Google Scholar 

  257. Arab M, Azadi M (2020) Effects of manufacturing parameters on the corrosion behavior of Al–B4C nanocomposites. Mater Chem Phys 253:123259

    Article  CAS  Google Scholar 

  258. Stalin B, Sudha GT, Kailasanathan C, Ravichandran M (2020) Effect of MoO3 ceramic oxide reinforcement particulates on the microstructure and corrosion behaviour of Al alloy composites processed by P/M route. Mater Today Commun 25:101655

    Article  CAS  Google Scholar 

  259. Pan S, Yuan J, Linsley C, Liu J, Li X (2022) Corrosion behavior of nano-treated AA7075 alloy with TiC and TiB2 nanoparticles. Corros Sci 206:110479

    Article  CAS  Google Scholar 

  260. Shukla AK, Mondal DP, Madapana D, Majumdar JD (2023) Surface degradation behavior of aluminium cenosphere composite foam developed by powder metallurgy route. Mater Chem Phys 295:127107

    Article  CAS  Google Scholar 

  261. Shukla AK, Mondal DP, Dutta Majumdar J (2021) Metallurgical Characteristics, compressive strength, and chemical degradation behavior of aluminum-cenosphere composite foam developed by spray forming route. J Mater Eng Perform 30(8):5750–5762

    Article  CAS  Google Scholar 

  262. Wang RZ, Zhang XC, Tu ST, Zhu SP, Zhang CC (2016) A modified strain energy density exhaustion model for creep-fatigue life prediction. Int J Fatigue 90:12–22

    Article  CAS  Google Scholar 

  263. Zhu SP, Huang HZ, He LP, Liu Y, Wang ZL (2012) A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys. Eng Fract Mech 90:89–100

    Article  Google Scholar 

  264. Withers PJ, Bennett J, Hung YC, Preuss M (2006) Crack opening displacements during fatigue crack growth in Ti–SiC fibre metal matrix composites by X-ray tomography. Mater Sci Technol 22:1052–1058

    Article  CAS  ADS  Google Scholar 

  265. Babout L, Maire E, Fougères R (2004) Damage initiation in model metallic materials X-ray tomography and modelling. Acta Mater 52(8):2475–2487

    Article  CAS  ADS  Google Scholar 

  266. Wu SC, Xiao TQ, Withers PJ (2017) The imaging of failure in structural materials by synchrotron radiation X-ray microtomography. Eng Fract Mech 182:127–156

    Article  Google Scholar 

  267. Hu, Y., Wu, S., Guo, Y., Shen, Z., Korsunsky, A. M., Yu, Y., & Withers, P. J. (2022). Inhibiting weld cracking in high-strength aluminium alloys. Nature Communications, 13(1), 5816.

  268. Wu Z, Wu S, Bao J, Qian W, Karabal S, Sun W, Withers PJ (2021) The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion. Int J Fatigue 151:106317

    Article  CAS  Google Scholar 

  269. Peng X, Wu S, Qian W, Bao J, Hu Y, Zhan Z, Withers PJ (2022) The potency of defects on fatigue of additively manufactured metals. Int J Mech Sci 221:107185

    Article  Google Scholar 

  270. Qian W, Wu S, Wu Z, Ahmed S, Zhang W, Qian G, Withers PJ (2022) In situ X-ray imaging of fatigue crack growth from multiple defects in additively manufactured AlSi10Mg alloy. Int J Fatigue 155:106616

    Article  CAS  Google Scholar 

  271. Martínez-Pañeda E, Niordson CF (2016) On fracture in finite strain gradient plasticity. Int J Plast 80:154–167

    Article  Google Scholar 

  272. Huang Y, Qu S, Hwang KC, Li M, Gao H (2004) A conventional theory of mechanism-based strain gradient plasticity. Int J Plast 20(4–5):753–782

    Article  Google Scholar 

  273. Wu H, Xu W, Shan D, Wang X, Guo B, Jin BC (2023) Micromechanical modeling of damage evolution and fracture behavior in particle reinforced metal matrix composites based on the conventional theory of mechanism-based strain gradient plasticity. J Market Res 22:625–641

    CAS  Google Scholar 

  274. Hu YN, Wu SC, Wu ZK, Zhong XL, Ahmed S, Karabal S, Withers PJ (2020) A new approach to correlate the defect population with the fatigue life of selective laser melted Ti-6Al-4V alloy. Int J Fatigue 136:105584

    Article  CAS  Google Scholar 

  275. Peng X, Wu S, Qian W, Bao J, Hu Y, Zhan Z, Withers PJ (2022) The potency of defects on fatigue of additively manufactured metals. Int J Mech Sci 221:107185

    Article  Google Scholar 

  276. Yang S, Gao X, Li W, Dai Y, Zhang J, Zhang X, & Yue H (2023). Effects of the graphene content on mechanical properties and corrosion resistance of aluminum matrix composite. J Mater Res Technol.

  277. Maleki A, Niroumand B, Shafyei A (2006) Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy. Mater Sci Eng, A 428(1–2):135–140

    Article  Google Scholar 

  278. Yong MS, Clegg AJ (2005) Process optimisation for a squeeze cast magnesium alloy metal matrix composite. J Mater Process Technol 168(2):262–269

    Article  CAS  Google Scholar 

  279. Umunakwe R, Okoye OC, Nwigwe US, Oyetunji A, Umunakwe IJ (2017) Effects of stirring time and particles preheating on porosity, mechanical properties and microstructure of periwinkle shell-aluminium metal matrix composite (PPS-ALMMC). Annals Faculty Eng Hunedoara 15(3):133

    CAS  Google Scholar 

  280. Jawalkar CS, Verma AS, Suri SM (2017) Fabrication of aluminium metal matrix composites with particulate reinforcement: a review. Mater Today: Proc 4(2):2927–2936

    Google Scholar 

  281. Hashim J (2001) The production of cast metal matrix composite by a modified stir casting method." Jurnalteknologi 9â-20.

  282. Senthilraj K, Rajamurugan G (2023) Influence of Al2TiO5 particles on AA6061 composites fabricated by bottom pouring stir casting technique. Mater Lett 338:134085

    Article  CAS  Google Scholar 

  283. Kumar A, Nirala A, Singh VP, Sahoo BK, Singh RC, Chaudhary R, Dewangan AK, Gaurav JK, Klemeš JJ, Liu X (2023) The utilisation of coconut shell ash in production of hybrid composite: microstructural characterisation and performance analysis. J Cleaner Product 398:136494

    Article  CAS  Google Scholar 

  284. Zhang H, Guo Z, Chao L, Zhang W, Men G (2024) Nanosecond laser processing and surface quality of SiC particle-reinforced AA2024 composite, homogeneous AA2024 aluminum alloy, and SiC: a comparative experimental study. Opt Laser Technol 169:110043

    Article  CAS  Google Scholar 

  285. Nabi S, Rathee S, Wani MF, & Srivastava M (2023). Effect of multiple passes on the properties of Al-5052/SiC surface composites fabricated via friction stir processing. Mater Chem and Phys, 128819.

  286. Zhao D, Zhao C, Xiu Z, Yan J (2024) Ultrasonic-assisted soldering of SiC ceramic and aluminum alloy with a commercial inactive Sn3.0Ag0.5Cu solder. Mater Sci Eng A 889:145833–145916

    Article  CAS  Google Scholar 

  287. Murugabalaji V, Rout M, Soni H, Sahoo BN (2024) Corrosion characteristics of AA 7075 and AA 7075/SiC/Gr hybrid composite processed through multistep hot cross rolling. Mater Chem Phys 313:128713

    Article  CAS  Google Scholar 

  288. Cao F, Cui H, Song X, Gao L, Liu M, Qiao Q, Kong H (2024) Fabrication of multi-scale TiC and stainless steel composite coatings via circular oscillating laser towards superior wear and corrosion resistance of aluminum alloy. J Mater Sci Technol 177:191–204

    Article  Google Scholar 

  289. Zhang M, Wang C, Mi G, Zhai C, & Li J (2023) Dispersion of reinforcing micro-particles in the laser welding of metal matrix composites: high-fidelity modeling with experimental characterization. Mater Charact, 113561.

  290. Yan P, Ding D, Xiao G, Chong X, Lei C, Feng C, Luo J (2024) One-step catalytic combustion synthesis of SiC/MgAl2O4 composite powders containing SiC nanowires. Ceram Int 50(3):4480–4491

    Article  CAS  Google Scholar 

  291. Cao XM, Duan J, Wang C, Jin P, Yang YJ, & Zhang JS (2023). The structural effect of SiC form ceramic on the compressive strength and thermal expansion properties of Cu–SiC composites. Mater Today Commun, 107722.

  292. Aldawood S, Asemi NN, Kassim H, Aziz AA, Saeed WS, Al-Odayni AB (2024) Gamma radiation shielding by titanium alloy reinforced by polymeric composite materials. J Radiat Res Appl Sci 17(1):100793

    CAS  Google Scholar 

  293. Razzaq AM, Majid DLAA, and Ishak MR (2017) A brief research review for improvement methods the wettability between ceramic reinforcement particulate and aluminium matrix composites." In IOP Conference series: materials science and engineering, vol. 203(1), p. 012002. IOP Publishing.

  294. Mistry JM, Gohil PP (2018) Research review of diversified reinforcement on aluminum metal matrix composites: fabrication processes and mechanical characterization. Sci Eng Compos Mater 25(4):633–647

    Article  CAS  Google Scholar 

  295. Thakur B, Barve S, Pesode P (2023) Investigation on mechanical properties of AZ31B magnesium alloy manufactured by stir casting process. J Mech Behav Biomed Mater 138:105641

    Article  CAS  PubMed  Google Scholar 

  296. Mourad A-HI, Christy JV, Krishnan PK, Mozumder MS (2023) Production of novel recycled hybrid metal matrix composites using optimized stir squeeze casting technique. J Manuf Process 88:45–58

    Article  Google Scholar 

  297. Christy JV, Mourad A-HI, Sherif MM, Shivamurthy B (2021) Review of recent trends in friction stir welding process of aluminum alloys and aluminum metal matrix composites. Transact Nonferrous Metals Soc China 31(11):3281–3309

    Article  Google Scholar 

  298. Arunachalam R, Piya S, Krishnan PK, Muraliraja R, Christy JV, Mourad A-HI, Al-Maharbi M (2020) Optimization of stir–squeeze casting parameters for production of metal matrix composites using a hybrid analytical hierarchy process–Taguchi-Grey approach. Eng Optim 52(7):1166–1183

    Article  Google Scholar 

  299. Krishnan PK, Christy JV, Arunachalam R, Mourad A-HI, Muraliraja R, Al-Maharbi M, Murali V, Chandra MM (2019) Production of aluminum alloy-based metal matrix composites using scrap aluminum alloy and waste materials: influence on microstructure and mechanical properties. J Alloys Compd 784:1047–1061

    Article  CAS  Google Scholar 

  300. Rajan G, Godasu AK, Mula S (2023) Effect of friction stir processing on microstructural evolution and mechanical properties of nanosized SiC reinforced AA5083 nanocomposites developed by stir casting. Mater Today Commun 35:105912

    Article  CAS  Google Scholar 

  301. Shanmuga Priyan VG (2023) Effect of ultrasonic treatment during stir casting on mechanical properties of AA6063-SiC composites. Mater Chem Phys 294:126977

    Article  Google Scholar 

  302. Kumar D, Thakur L (2023) Influence of hybrid reinforcements on the mechanical properties and morphology of AZ91 magnesium alloy composites synthesized by ultrasonic-assisted stir casting. Mater Today Commun 35:105937

    Article  CAS  Google Scholar 

  303. Ranjan S, Jha PK (2023) Investigation on the thermodynamic stability of phases evolved in Al-based hybrid metal matrix composite fabricated using in-situ stir casting route. J Manuf Process 95:14–26

    Article  Google Scholar 

  304. Makwana D, Pramod B (2023) Dry sliding wear and heat flux mapping of closed-cell Mg-2Zn-2Ca foam fabricated by stir casting route. Mater Lett 330:133379

    Article  CAS  Google Scholar 

  305. Memar S, Azadi M (2023) An evaluation on microstructure, wear, and compression behavior of Al2O3/brass matrix nanocomposites fabricated by stir casting method. Mater Today Commun 34:105130

    Article  CAS  Google Scholar 

  306. Kumaravelu P, Kandasamy J (2023) Controlling the mechanical failures of stir-cast Mg-AZ91D alloy using dicalcium silicate reinforcement. Eng Fail Analy 146:107139

    Article  CAS  Google Scholar 

  307. Kumar D, Singh S, Angra S (2023) Dry sliding wear and microstructural behavior of stir-cast al6061-based composite reinforced with cerium oxide and graphene nanoplatelets. Wear 516:204615

    Article  Google Scholar 

  308. Kumar C, Sarkar S, Mukhopadhyay G, Chakraborti PC, Sen I, Roy S (2023) Systematic study of the effect of K2TiF6 flux content on the microstructure and mechanical properties of Al–B4C composites. Mater Sci Eng A 871:144913

    Article  CAS  Google Scholar 

  309. Dhinakarraj CK, Senthilkumar N, Palanikumar K, Deepanraj B (2023) Experimental interrogations on morphologies and mechanical delineation of silicon nitride fortified Mg-Al-Zn alloy composites. Mater Today Commun 35:105731

    Article  CAS  Google Scholar 

  310. Saleh B, Ma A, Fathi R, Radhika N, Yang G, Jiang J (2023) Optimized mechanical properties of magnesium matrix composites using RSM and ANN. Mater Sci Engi B 290:116303–116316

    Article  CAS  Google Scholar 

  311. Chenrayan V, Vaishnav V, Shahapurkar K, Manivannan C, Tirth V, Alarifi IM, Alamir MA, Pruncu CI, Lamberti L (2023) Tribological performance of TiB2-graphene Al 7075 hybrid composite processed through squeeze casting: at room and high temperature. Tribol Int 185:108486

    Article  CAS  Google Scholar 

  312. Vicente R, Cesca K, da Silva AFV, de Oliveira D, de Andrade CJ, Ambrosi A (2023) Hierarchical membrane by centrifugal casting and effects of incorporating activated carbon as pore-former. J Eur Ceram Soc 43(8):3447–3453

    Article  CAS  Google Scholar 

  313. Ismail H, Zakri MNZ, Ahmad A, Mohamad H (2023) Effect of sintering temperature on the phase, microstructural, physical, mechanical, and in vitro biomineralisation properties of porous wollastonite ceramics fabricated using the gel casting method. Ceram Int 49(9):14166–14176

    Article  CAS  Google Scholar 

  314. Carvalho AP, and Figueiredo RB (2023) "The contribution of grain boundary sliding to the deformation in an ultrafine-grained Mg–Al–Zn alloy." J Mater Sci : 1–13.

  315. Chen B, Sun X, Liu D, Tian H, Gao J (2023) A novel method combining VAT photopolymerization and casting for the fabrication of biodegradable Zn–1Mg scaffolds with triply periodic minimal surface. J Mech Behav Biomed Mater 141:105763

    Article  CAS  PubMed  Google Scholar 

  316. Alamolhoda S, Heshmati-Manesh S, Ataie A, Sheibani S (2011) Effect of Nb and Nb 2 O 5 additives on mechano-thermal processing of TiAl/Al 2 O 3 nano-composite. J Mater Sci 46:5512–5518

    Article  CAS  ADS  Google Scholar 

  317. Ye C, Zhao Y, Li Y, Zhao X, Li M, Shi J, Liu X (2023) Structure, impedance and conduction mechanisms of tape-casting (Bi0. 44Nd0. 01Sr0. 02Ca0. 02) Na0. 5TiO2. 965 ceramic film. Ceram Int 49(9):14571–14580

    Article  CAS  Google Scholar 

  318. Huang S-J, Subramani M, Borodianskiy K, Immanuel PN, Chiang CC (2023) Effect of equal channel angular pressing on the mechanical properties of homogenized hybrid AZ61 magnesium composites. Mater Today Commun 34:104974

    Article  CAS  Google Scholar 

  319. Naghshehkesh N, Mousavi SE, Karimzadeh F, Ashrafi A, Nosko M, Trembošová V, Sadeghi B (2019) Effect of graphene oxide and friction stir processing on microstructure and mechanical properties of Al5083 matrix composite. Mater Res Express 6(10):106566

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge UAE University for providing the facilities and funds through Materials library (#31N392)—Industry 4.0 district project. Also, authors would like to acknowledge IES University Bhopal, India for providing facilities and moral support in making this research.

Author information

Authors and Affiliations

Authors

Contributions

The above authors AK (M. Tech.: NIT Warangal, India; PhD: DTU Delhi, India; and having more than 15 SCI/Scopus publications) performed methodology, formal analysis, investigation, and writing—original draft. VPS (M. Tech.: NIT Bhopal, India; PhD: NIT Mizoram, India; and having more than 35 SCI/Scopus publications) did writing—original draft and writing—review & editing. RCS (Professor at DTU Delhi India and having more than 200 SCI/Scopus publications) provided supervision and writing—review & editing. RC (Professor at DTU Delhi, India, and having more than 130 SCI/Scopus publications) analyzed supervision and writing—review & editing. DK (M. Tech.: NIT Srinagar, India; PhD: IIT Delhi, India; Post-Doc: Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; and having more than 40 SCI/Scopus publications) approved writing—review & editing and visualization. A-HI.M (Professor at United Arab Emirates University, Al-Ain, United Arab Emirates, and having more than 300 SCI/Scopus publications) revised writing—review & editing, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Abdel-Hamid I. Mourad.

Ethics declarations

Conflicts of interest

All authors declare that they have no conflicts of interest.

Data and code availability

Not applicable.

Ethical approval

Not applicable.

Additional information

Handling Editor: Zhao Shen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Singh, V.P., Singh, R.C. et al. A review of aluminum metal matrix composites: fabrication route, reinforcements, microstructural, mechanical, and corrosion properties. J Mater Sci 59, 2644–2711 (2024). https://doi.org/10.1007/s10853-024-09398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09398-7

Navigation