Skip to main content
Log in

Study on the Formation of Inclusions in Ti–La–Mg Treated Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Through the comparison of the inclusions in steels treated by Ti, Ti–La, and Ti–La–Mg, such as morphology, composition, size, and number density of inclusions, the formation process of inclusions in Ti–La–Mg treated steel was studied. It was found that after Ti was added to the steel, the inclusions transformed from Mn–Si–O + MnS to composite multilayer spherical inclusions, whose composition from inside to outside were Ti–O, Mn–Si–O, and MnS. In both Ti–La and Ti–La–Mg treated steels, there was a layer of Mn–Si–O + MnS adhered to the outmost surface of the composite spherical inclusions, which was similar to that of the Ti treated steel. When Ti–La treated, a homogeneous La–Ti–O inclusion could form, and it was the innermost core of the composite inclusion. The La–Ti–O inclusion and MgO collided and aggregated randomly, and they could not form homogeneous inclusions in the composite treatment of Ti–La–Mg, resulting in there were two kinds of cores, La–Ti–O and La–Ti–O + MgO, within the complex inclusion. The process sample study showed that when Ti was added, the number of inclusions would increase. Then after the La addition, owing to the La-containing inclusions (La–Ti–O) aggregation being significant, both the size and number of inclusions could increase in steel. After that, a small amount of Mg could reduce the number and size of inclusions, especially the large-size inclusions. During the cooling process of Ti–La–Mg composite treated steel, the number of inclusions decreased, while the average size of inclusions increased a little.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. H. Feng, P.C. Lu, and H.B. Li: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 864–76.

    Article  Google Scholar 

  2. H. Yao, L.F. Zhang, and Q. Ren: Steel Res. Int., 2021, vol. 93, p. 2100468.

    Article  Google Scholar 

  3. J. Zhang, L.F. Zhang, and Y. Ren: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2659–75.

    Article  Google Scholar 

  4. H.N. Lou, C. Wang, B.X. Wang, Z.D. Wang, and R.D.K. Misra: ISIJ Int., 2019, vol. 59, pp. 312–18.

    Article  CAS  Google Scholar 

  5. X.Z. Gao, S.F. Yang, J.S. Li, Y.D. Yang, K. Chattopadhyay, and A. Mclean: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 461–70.

    Article  Google Scholar 

  6. M. Lind and L. Holappa: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 359–66.

    Article  CAS  Google Scholar 

  7. M.G. Li, H. Matsuura, and F. Tsukihashi: Metall. Mater. Trans. A, 2021, vol. 52A, pp. 2389–2401.

    Article  Google Scholar 

  8. H. Liu, W.F. Li, C.Y. Ren, L.F. Zhang, and Y. Ren: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1323–28.

    Article  Google Scholar 

  9. W. Liu, M.Y. Li, S.F. Yang, Z.Q. Xu, C.Y. Huang, T. Liu, and J.S. Li: J. Mater. Res. Technol., 2022, vol. 18, pp. 990–97.

    Article  CAS  Google Scholar 

  10. W. Yang, C.B. Guo, L.F. Zhang, H.T. Ling, and C. Li: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2717–30.

    Article  Google Scholar 

  11. S.C. Park, I.H. Jung, K.S. Oh, and H.G. Lee: ISIJ Int., 2004, vol. 44, pp. 1016–23.

    Article  CAS  Google Scholar 

  12. Y. Wang, X.H. Sun, L.F. Zhang, and Y. Ren: J. Mater. Res. Technol., 2020, vol. 9, pp. 11351–60.

    Article  CAS  Google Scholar 

  13. X.L. Fan, L.F. Zhang, Y. Ren, W. Yang, and S.J. Wu: Metals, 2022, vol. 12, pp. 181–94.

    Article  CAS  Google Scholar 

  14. P.L. Jin, Y.M. Yang, L. Cao, X.H. Yuan, and G.C. Wang: Steel Res. Int., 2023, https://doi.org/10.1002/srin.202200905.

    Article  Google Scholar 

  15. G.C. Wang, T.P. Song, Y.Y. Xiao, J.F. Wei, and P.L. Jin: Ironmak. Steelmak., 2023, https://doi.org/10.1080/03019233.2023.2185736.

    Article  Google Scholar 

  16. X.B. Yuan, M. Zhong, Y.W. Wu, and C. Wang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 656–61.

    Article  Google Scholar 

  17. S. Ji, L.F. Zhang, and X.D. Wang: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 848–63.

    Article  Google Scholar 

  18. Y. Li, X.L. Wan, W.Y. Lu, A.A. Shirzadi, O. Isayev, O. Hress, and K.M. Wu: Mater. Sci. Eng. A, 2016, vol. 659, pp. 179–87.

    Article  CAS  Google Scholar 

  19. L. Wang, B. Song, Z.B. Yang, X.K. Cui, Z. Liu, W.S. Cheng, and J.H. Mao: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 1940–48.

    Article  CAS  Google Scholar 

  20. R.S. Li, M.C. Li, and W.L. Wang: J. Iron. Steel Res. Int., 2023, https://doi.org/10.1007/s42243-022-00895-0.

    Article  Google Scholar 

  21. Q. Ren and L.F. Zhang: Metall. Mater. Trans. B, 2020, vol. 51B, pp. 589–600.

    Article  Google Scholar 

  22. T.S. Zhang, C.J. Liu, J.Y. Qiu, X.B. Li, and M.F. Jiang: ISIJ Int., 2017, vol. 52, pp. 314–21.

    Article  Google Scholar 

  23. M. Alba, M. Nabeel, and N. Dogan: Ironmak. Steelmak., 2021, vol. 48, pp. 379–86.

    Article  CAS  Google Scholar 

  24. C. Liu, Z.H. Jiang, J.B. Zhao, X.Q. Cheng, Z.Y. Liu, D.W. Zhang, and X.G. Li: Corros. Sci., 2020, vol. 166, p. 108463.

    Article  CAS  Google Scholar 

  25. F.C. Liu, Q. Wang, J.W. Li, Y.D. Liu, T. He, and G. Yuan: Mater Charact, 2021, vol. 181, p. 111503.

    Article  CAS  Google Scholar 

  26. C. Pan, X.J. Hu, P. Lin, and K. Chou: ISIJ Int., 2020, vol. 60, pp. 1878–85.

    Article  CAS  Google Scholar 

  27. X.K. Cui, B. Song, and J.H. Mao: Metall. Res. Technol., 2021, vol. 118, pp. 208–16.

    Article  CAS  Google Scholar 

  28. X.K. Cui, B. Song, Z.B. Yang, Z. Liu, L.F. Li, and L. Wang: Steel Res. Int., 2020, vol. 91, p. 1900563.

    Article  CAS  Google Scholar 

  29. H.N. Lou, C. Wang, B.X. Wang, Z.D. Wang, and R.D.K. Misra: J. Iron. Steel Res. Int., 2019, vol. 26, pp. 501–11.

    Article  CAS  Google Scholar 

  30. Y.M. Xie, M.M. Song, H.Y. Zhu, J.L. Li, G.J. Ma, and Z.L. Xue: Metall. Mater. Trans. B, 2022, vol. 53B, pp. 1484–94.

    Article  Google Scholar 

  31. Y.M. Xie, M.M. Song, B. Wang, H.Y. Zhu, Z.L. Xue, A. Mayerhofer, S.K. Michelic, C. Bernhard, and J.L. Schenk: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 2101–10.

    Article  Google Scholar 

  32. J.S. Park and J.H. Park: Steel Res. Int., 2014, vol. 85, pp. 1303–09.

    Article  CAS  Google Scholar 

  33. W.S. Wang, H.Y. Zhu, Y. Han, J.L. Li, and Z.L. Xue: Ironmak. Steelmak., 2021, vol. 48, pp. 1038–47.

    Article  CAS  Google Scholar 

  34. Q.R. Tian, G.C. Wang, D.L. Shang, H. Lei, X.H. Yuan, Q. Wang, and L. J: Metall. Mater. Trans. B, 2018, vol. 49B, pp. 3137–50.

  35. I. Ohnaka: Trans. ISIJ., 1986, vol. 26, pp. 1045–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 52074199.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingming Song or Hangyu Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Song, M., Zhu, H. et al. Study on the Formation of Inclusions in Ti–La–Mg Treated Steel. Metall Mater Trans B 55, 576–588 (2024). https://doi.org/10.1007/s11663-023-02978-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02978-z

Navigation