Skip to main content
Log in

Effect of Ca and Ti contents on characteristics of inclusions in Fe–Si–Cr–Mn–Al–Ti–Ca–O melts

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The inclusion characteristics in 55SiCr spring steel with different contents of titanium and calcium were investigated. The chemical compositions of steel samples were detected by inductively coupled plasma optical emission spectrometer, and the inclusion characteristics was determined by field emission scanning electron microscopy (FE-SEM) and energy-dispersive spectroscopy. The results show that the Ti/Al ratio should be kept at less than 1, and the content of calcium should be controlled between 0.0015 and 0.0025 wt.% in Si–Mn–Al deoxidized steel, so that more solid inclusions can be converted to liquid inclusions. Moreover, the high Ti content in melts is the direct cause of the high proportion of Ti3O5 in the inclusions, which involves [Ti] to reduce SiO2 and Al2O3 in inclusions. In addition, calcium treatment can reduce the content of Ti3O5 in inclusions, and the degree of reduction is closely related to the content of [O]. The thermodynamic calculation of Fe–Si–Mn–Cr–Al–Ti–Ca–O molten steel system during solidification process was performed by FactSage software, taking all types of inclusions into account, such as titanium oxide, calcium oxide, aluminum oxide, silicon oxide, manganese oxide, calcium titanate, mullite, calcium aluminate, and liquid inclusion. The inclusion type of calculation results was in accordance with the experimental results at 1550 °C, and TiOx aggregation behavior was consistent with the Ti2O3-containing precipitation phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Cai, Y. Bao, L. Lin, C. Gu, Steel Res. Int. 87 (2016) 1168–1178. https://doi.org/10.1002/srin.201500305.

    Article  Google Scholar 

  2. L. Chen, W. Chen, Y. Hu, Z. Chen, Y. Xu, W. Yan, Steel Res. Int. 88 (2017) 1600376. https://doi.org/10.1002/srin.201600376.

    Article  Google Scholar 

  3. J.S. Byun, J.H. Shim, Y.W. Cho, D.N. Lee. Acta Mater. 51 (2003) 1593–1606. https://doi.org/10.1016/S1359-6454(02)00560-8.

    Article  Google Scholar 

  4. M. Kiviö, L. Holappa, Metall. Mater. Trans. B 43 (2012) 233–240. https://doi.org/10.1007/s11663-011-9603-5.

    Article  Google Scholar 

  5. Y. Hou, G. Cheng, H. Cheng, Metall. Mater. Trans. B 51 (2020) 709–721. https://doi.org/10.1007/s11663-019-01767-x.

    Article  Google Scholar 

  6. C. Wang, N.T. Nuhfer, S. Sridhar, Metall. Mater. Trans. B 40 (2009) 1005. https://doi.org/10.1007/s11663-009-9267-6.

    Article  Google Scholar 

  7. L. Zhang, Y. Wang, X. Zuo, Metall. Mater. Trans. B 39 (2008) 534–550. https://doi.org/10.1007/s11663-008-9154-6.

    Article  Google Scholar 

  8. Y. Gao, K. Sorimachi, ISIJ Int. 33 (1993) 291–297. https://doi.org/10.2355/isijinternational.33.291.

    Article  Google Scholar 

  9. P.A. Davidson, X. He, A.J. Lowe, Mater. Sci. Technol. 16 (2000) 699–711. https://doi.org/10.1179/026708300101508306.

    Article  Google Scholar 

  10. L. Zhang, B.G. Thomas, ISIJ Int. 43 (2003) 271–291. https://doi.org/10.2355/isijinternational.43.271.

    Article  Google Scholar 

  11. J. Li, G. Cheng, Q. Ruan, J. Pan, X. Chen, Metall. Mater. Trans. B 50 (2019), 2769–2779. https://doi.org/10.1007/s11663-019-01708-8.

    Article  Google Scholar 

  12. C. Wang, N.T. Nuhfer, S. Sridhar, Metall. Mater. Trans. B 40 (2009) 1022. https://doi.org/10.1007/s11663-009-9290-7.

    Article  Google Scholar 

  13. C. Wang, N.T. Nuhfer, S. Sridhar, Metall. Mater. Trans. B 41 (2010) 1084–1094. https://doi.org/10.1007/s11663-010-9397-x.

    Article  Google Scholar 

  14. T. Zhang, C. Liu, M. Jiang, Metall. Mater. Trans. B 47 (2016) 2253–2262. https://doi.org/10.1007/s11663-016-0706-x.

    Article  Google Scholar 

  15. S. Basu, S.K. Choudhary, N.U. Girase, ISIJ Int. 44 (2004) 1653–1660. https://doi.org/10.2355/isijinternational.44.1653.

    Article  Google Scholar 

  16. I.H. Jung, G. Eriksson, P. Wu, A. Pelton, ISIJ Int. 49 (2009) 1290–1297. https://doi.org/10.2355/isijinternational.49.1290.

    Article  Google Scholar 

  17. W.C. Doo, D.Y. Kim, S.C. Kang, K.W. Yi, Met. Mater. Int. 13 (2007) 249–255. https://doi.org/10.1007/BF03027813.

    Article  Google Scholar 

  18. H.S. Kim, H.G. Lee, K.S. Oh, ISIJ Int. 42 (2002) 1404–1411. https://doi.org/10.2355/isijinternational.42.1404.

    Article  Google Scholar 

  19. Z. Deng, L. Chen, G. Song, M. Zhu, Metall. Mater. Trans. B 51 (2020) 173–186. https://doi.org/10.1007/s11663-019-01728-4.

    Article  Google Scholar 

  20. W. Mu, C. Xuan, Metall. Mater. Trans. B 50 (2019) 2694–2705. https://doi.org/10.1007/s11663-019-01686-x.

    Article  Google Scholar 

  21. Y. Higuchi, M. Numata, S. Fukagawa, K. Shinme, ISIJ Int. 36 (1996) S151–S154. https://doi.org/10.2355/isijinternational.36.Suppl_S151.

    Article  Google Scholar 

  22. W. Zheng, Z.H. Wu, G.Q. Li, Z. Zhang, C.Y. Zhu, ISIJ Int. 54 (2014) 1755–1764. https://doi.org/10.2355/isijinternational.54.1755.

    Article  Google Scholar 

  23. S.C. Park, I.H. Jung, K.S. Oh, H.G. Lee, ISIJ Int. 44 (2004) 1016–1023. https://doi.org/10.2355/isijinternational.44.1016.

    Article  Google Scholar 

  24. W. Yang, L. Zhang, X. Wang, Y. Ren, X. Liu, Q. Shan, ISIJ Int. 53 (2013) 1401–1410. https://doi.org/10.2355/isijinternational.53.1401.

    Article  Google Scholar 

  25. J.H. Park, S.B. Lee, D.S. Kim, Metall. Mater. Trans. B 36 (2005) 67–73. https://doi.org/10.1007/s11663-005-0007-2.

    Article  Google Scholar 

  26. T.S. Zhang, Y. Min, M.F. Jiang, Can. Metall. Quart. 54 (2015) 161–169. https://doi.org/10.1179/1879139514y.0000000173.

    Article  Google Scholar 

  27. T.S. Zhang, R.S. Li, W.L. Wang, S.F. Dai, P.S. Lv, Y. Tian, Metall. Res. Technol. 118 (2021) 214. https://doi.org/10.1051/metal/2021010.

    Article  Google Scholar 

  28. W.L. Wang, L.W. Xue, T.S. Zhang, L.J. Zhou, J.Y. Chen, Z.H. Pan, Ceram. Int. 45 (2019) 20664–20673.

    Article  Google Scholar 

  29. S.H. Seok, T. Miki, M. Hino, ISIJ Int. 51 (2011) 566–572. https://doi.org/10.2355/isijinternational.51.566.

    Article  Google Scholar 

  30. W.Y. Cha, T. Nagasaka, T. Miki, Y. Sasaki, M. Hino, ISIJ Int. 46 (2006) 996–1005. https://doi.org/10.2355/isijinternational.46.996.

    Article  Google Scholar 

  31. J.J. Pak, J.O. Jo, S.I. Kim, W.Y. Kim, T.I. Chung, S.M. Seo, J.H. Park, D.S. Kim, ISIJ Int. 47 (2007) 16–24. https://doi.org/10.2355/isijinternational.47.16.

    Article  Google Scholar 

  32. W.Y. Cha, T. Miki, Y. Sasaki, M. Hino, ISIJ Int. 46 (2006) 987–995. https://doi.org/10.2355/isijinternational.46.987.

    Article  Google Scholar 

  33. The Japan Society for the Promotion of Science, Steelmaking Data Sourcebook, in: The 19th Committee on Steelmaking Gordon and Breach Science Publishers, New York, USA, 1988, pp. 45.

  34. H. Itoh, M. Hino, S. Ban-ya, Tetsu-to-Hagane 83 (1997) 695–700. https://doi.org/10.2355/tetsutohagane1955.83.11_695.

    Article  Google Scholar 

  35. J. Chen, Manual of data and charts used in steelmaking, 2nd ed., Metallurgical Industry Press, Beijing, China, 2010.

    Google Scholar 

  36. J.H. Park, H. Todoroki, ISIJ Int. 50 (2010) 1333–1346. https://doi.org/10.2355/isijinternational.50.1333.

    Article  Google Scholar 

  37. Y.P. Chu, W.F. Li, Y. Ren, L.F. Zhang, Metall. Mater. Trans. B 50 (2019) 2047–2062. https://doi.org/10.1007/s11663-019-01593-1.

    Article  Google Scholar 

  38. J.H. Shin, J.H. Park, Metall. Mater. Trans. B 51 (2020) 1211–1224. https://doi.org/10.1007/s11663-020-01812-0.

    Article  Google Scholar 

  39. Q.F. Shu, V.V. Visuri, T. Alatarvas, T. Fabritius, Metall. Mater. Trans. B 51 (2020) 2905–2916. https://doi.org/10.1007/s11663-020-01955-0.

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the National Natural Science Foundation of China (51904346) and the Introduce Talents Research Fund of Central South University are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong-sheng Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Rs., Li, Mc., Zhang, Ts. et al. Effect of Ca and Ti contents on characteristics of inclusions in Fe–Si–Cr–Mn–Al–Ti–Ca–O melts. J. Iron Steel Res. Int. 30, 1952–1962 (2023). https://doi.org/10.1007/s42243-022-00895-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-022-00895-0

Keywords

Navigation