Skip to main content
Log in

Evolution of Oxide Inclusions in Si-Mn Killed Steels During Hot-Rolling Process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The evolution of oxide inclusions in Si-Mn killed steels refined by slags of different basicity during a four-pass industrial hot-rolling process was investigated using an automated microscopy system. High-basicity refining slag induced the formation of CaO- and Al2O3-containing inclusions, while refining slag with 0.8 basicity induced dominant inclusions of SiO2 and MnO-SiO2. CaO-SiO2-Al2O3 inclusions mainly formed endogenously during solidification and cooling of Ca-containing steels, where Ca originated from slag-steel reactions. However, the larger-sized higher-CaO inclusions originated from slag entrainment. Different inclusions presented different hot-rolling behaviors. The inclusion composition changed by deformation and new phase formation. The dominant oxide types were unchanged under refinement by low-basicity slag; however, they changed under refinement with high-basicity slag. The deformation index of inclusions decreased with increasing accumulated reduction (AR) of the steel. The difference in deformation index between different inclusion types was the largest in the first rolling stage and decreased in subsequent stages. SiO2-CaO and SiO2-MnO-CaO inclusions had larger deformation indices during hot rolling but smaller indices in the last two stages. High-basicity slag increased inclusion complexity; from the perspective of cold-drawing performance, low-basicity refining slag is better for the industrial production of tire-cord steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. LECO is a trademark of LECO Corporation, St. Joseph, MI.

References

  1. K. Iemura, H. Ichihashi, A. Kawami, and M. Mizutani: Proc. 3rd Int. Conf. on Clean Steel, Institute of Metals, London, 1986, pp. 160–67.

  2. Y. Shinsho, T. Nozaki, and K. Sorimachi: Wire J. Int., 1988, vol. 21, pp. 145–53.

    Google Scholar 

  3. S. Maeda, T. Soejima, and T. Saito: 72nd Steelmaking Conf. Proc., Iron & Steel Society, Chicago, IL, 1989, pp. 379–85.

  4. H. Ohta and H. Suito: Metall. Mater. Trans. B, 1996, vol. 27B, pp. 263–70.

    Article  Google Scholar 

  5. H. Suito and R. Inoue: ISIJ Int., 1996, vol. 36, pp. 528–36.

    Article  Google Scholar 

  6. D.-H. Woo, Y.-B. Kang, and H.-G. Lee: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 915–20.

    Article  Google Scholar 

  7. Y.-B. Kang and H.-G. Lee: ISIJ Int., 2004, vol. 44, pp. 1006–15.

    Article  Google Scholar 

  8. S.-H. Chen, M. Jiang, X.-F. He, and X.-H. Wang: Int. J. Miner. Metall. Mater., 2012, vol. 19, pp. 490–98.

    Article  Google Scholar 

  9. J.S. Park and J.H. Park: Metall. Mater. Trans. B, 2014, vol. 45B, pp. 953–60.

    Article  Google Scholar 

  10. P. Gilormini and F. Montheillet: J. Mech. Phys. Solids, 1986, vol. 34, pp. 97–123.

    Article  Google Scholar 

  11. R.D. Thomson and J.W. Hancock: Mechanical Behaviour of MaterialsProc. 4th Int. Conf., Elsevier, Amsterdam, Netherlands, 1984, pp. 733–37.

  12. N. Nagayama, T. Abe, and S. Nagaki: Comput. Mechan., 1989, vol. 4, pp. 433–41.

    Article  Google Scholar 

  13. M. Pietrzyk, J. Kusiak, H. Kusiak, and F. Grosman: Steel Res., 1991, vol. 62, pp. 507–11.

    Article  Google Scholar 

  14. A.A. Milenin: Russ. Metall., 1995, vol. 16, pp. 97–103.

    Google Scholar 

  15. U. Ståhlberg: J. Mechan. Work. Technol., 1979, vol. 3, pp. 185–92.

    Article  Google Scholar 

  16. C. Luo and U. Ståhlberg: Scand. J. Metall., 2002, vol. 31, pp. 184–90.

    Article  Google Scholar 

  17. C. Luo and U. Ståhlberg: J. Mater. Process. Technol., 2001, vol. 114, pp. 87–97.

    Article  Google Scholar 

  18. E. Ervasti and U. Ståhlberg: J. Mater. Process. Technol., 2005, vol. 170, pp. 142–50.

    Article  Google Scholar 

  19. H.-L. Yu, H.-Y. Bi, X.-H. Liu, L.-Q. Chen, and N.-N. Dong: J. Mater. Process. Technol., 2009, vol. 209, pp. 4274–80.

    Article  Google Scholar 

  20. F. Pickering and A. Met: J. Iron Steel Inst., 1958, vol. 189, pp. 148–59.

    Google Scholar 

  21. T. Malkiewicz and S. Rudnik: J. Iron Steel Inst., 1963, vol. 201, pp. 33–38.

    Google Scholar 

  22. S. Rudnik: J. Iron Steel Inst., 1966, vol. 204, pp. 374–76.

    Google Scholar 

  23. P.J.H. Maunder and J.A. Charles: J. Iron Steel Inst., 1968, vol. 206, pp. 705–15.

    Google Scholar 

  24. J. Charles and I. Uchiyama: J. Iron Steel Inst., 1969, vol. 207, pp. 979–83.

    Google Scholar 

  25. T.J. Baker and J.A. Charles: J. Iron Steel Inst., 1972, vol. 210, pp. 680–90.

    Google Scholar 

  26. P.E. Waudby: Steel Times Annu. Rev., 1972, vol. 200, pp. 147–52.

    Google Scholar 

  27. S. Ekerot: Scand. J. Metall., 1974, vol. 3, pp. 21–27.

    Google Scholar 

  28. K.B. Gove and J.A. Charles: Met. Technol., 1974, vol. 1, pp. 425–31.

    Article  Google Scholar 

  29. B.-I. Klevebring: Scand. J. Metall., 1974, vol. 3, pp. 102–04.

    Google Scholar 

  30. T.J. Baker, K.B. Gave, and J.A. Charles: Met. Technol., 1976, vol. 3, pp. 183–93.

    Article  Google Scholar 

  31. Y. Murty, T. Kattamis, R. Mehrabian, and M. Flemings: Metall. Trans. A, 1977, vol. 8A, pp. 1275–82.

    Article  Google Scholar 

  32. S. Ramalingam, K. Basu, and S. Malkin: Mater. Sci. Eng., 1977, vol. 29, pp. 117–21.

    Article  Google Scholar 

  33. A. Segal and J.A. Charles: Met. Technol., 1977, vol. 4, pp. 177–82.

    Article  Google Scholar 

  34. F. Pickering and S. Robinson: Inst. Metall. Inclus., 1979, vol. 3, pp. 127–56.

    Google Scholar 

  35. F. Vodopivec and M. Gabrovšek: Met. Technol., 1980, vol. 7, pp. 186–91.

    Article  Google Scholar 

  36. B. Gerard, R. Paul, and U. Georges: Rev. Metall., 1981, vol. 78, pp. 421–33.

    Article  Google Scholar 

  37. G.I. Belchenko and S.I. Gubenko: Russ. Metall., 1983, vol. 4, pp. 66–69.

    Google Scholar 

  38. R. Maiti and E.B. Hawbolt: J. Mater. Energy Syst., 1985, vol. 6, pp. 251–62.

    Article  Google Scholar 

  39. P. Rocabois, J.N. Pontoire, H. Gaye, J. Lehmann, and C. Gatellier: Rev. Metall., 1997, vol. 94, pp. 1393–1400.

    Article  Google Scholar 

  40. M. Gagne and E. Thibault: CIM Bull., 1998, vol. 91, pp. 98–103.

    Google Scholar 

  41. S. Kimura, I. Hoshikawa, N. Ibaraki, S. Hattori, and T. Choda: Tetsu-to-Hagané, 2002, vol. 88, pp. 755–62.

    Article  Google Scholar 

  42. K.-I. Yamamoto, H. Yamamura, and Y. Suwa: ISIJ Int., 2011, vol. 51, pp. 1987–94.

    Article  Google Scholar 

  43. G. Xu, Z. Jiang, and Y. Li: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2411–20.

    Article  Google Scholar 

  44. K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao, and Z. Cao: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2198–2207.

    Article  Google Scholar 

  45. K. Wang, M. Jiang, X. Wang, Y. Wang, H. Zhao, and Z. Cao: Metall. Mater, Trans, B, 2016, vol. 47, pp. 282–90.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support from the National Science Foundation of China (Grant Nos. 51274034, 51334002, 51404019, 51604023, and 51504020), the Beijing Key Laboratory of Green Recycling and Extraction of Metals (GREM), the Laboratory of Green Process Metallurgy and Modeling (GPM2), and the High Quality Steel Consortium (HQSC) at the School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing (USTB), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Manuscript submitted December 16, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Guo, C., Zhang, L. et al. Evolution of Oxide Inclusions in Si-Mn Killed Steels During Hot-Rolling Process. Metall Mater Trans B 48, 2717–2730 (2017). https://doi.org/10.1007/s11663-017-1025-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1025-6

Keywords

Navigation