Skip to main content
Log in

Effects of MgO Nanoparticle Additions on the Structure and Mechanical Properties of Continuously Cast Steel Billets

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new approach for pre-dispersing MgO nanoparticles and adding them to molten steel during continuous casting operations was established. The influence of different mass fractions of MgO nanoparticles on inclusion characteristics, steel microstructure, and the ability of inclusions to induce acicular ferrite (AF) formation, was investigated. The results revealed that after adding different mass fractions of nanoparticles, the majority of inclusions contained MgO-Al2O3, and the inclusion size was considerably refined. These inclusions promoted AF formation, and with increasing inclusion size from 1.0 to 1.8 μm, the proportion of AF progressively increased. The ability of inclusions to induce AF was greatly reduced when the inclusion size reached 7.0 μm. This was primarily due to the relationship between the ferrite nucleation rate and inclusion size. It was also found that the size of inclusions that functioned as pinning particles was larger than that of inclusions that served as AF nucleation cores. When the mass fraction of MgO nanoparticles reached 0.05 pct, the degree of interlocking of AF within the microstructure of billet specimens was maximized and this was associated with optimal values for strength and impact properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AF:

Acicular ferrite

BF:

Banded ferrite

EAM:

External addition method

EDS:

Energy-dispersive spectrometry

f :

Volume fraction of particles

IAF:

Intragranular acicular ferrite

IPM:

Internal precipitation method

N V :

Quantity of inclusions per unit volume

PAGB:

Primary austenite grain boundaries

PF:

Polygonal ferrite

r :

Radius of the pinning particles

R :

Zener limit

R*:

A non-dimensional parameter which is proportional to the radius of curvature of the inclusions

R I :

Radius of curvature of the inclusions

r C :

Critical radius of inclusions that will nucleate ferrite

SEM:

Scanning electron microscopy

θ :

Contact angle between ferrites and inclusions

References

  1. X. Zhang, L. Fan, Y. Xu, J. Li, X. Xiao, and L. Jiang: Mater & Design., 2015, vol. 65, pp. 682-89.

    Article  Google Scholar 

  2. C. Zhang, X. Song, P. Lu, and X. Hu: Mater & Design., 2012, vol. 36, pp. 233-42.

    Article  Google Scholar 

  3. J. Kobayashi, S.M. Song, and K.I. Sugimoto: ISIJ Int., 2012, vol. 52, pp. 1124-29.

    Article  Google Scholar 

  4. C.J. Martis, S.K. Putatunda, and J. Boileau: Mater & Design., 2013, vol. 46, pp. 168-74.

    Article  Google Scholar 

  5. D. Rasouli, S.K. Asl, A. Akbarzadeh, and G.H. Daneshi: Mater & Design., 2009, vol. 30, pp. 2167-72.

    Article  Google Scholar 

  6. M. Niikura, M. Fujioka, Y. Adachi, A. Matsukura, T. Yokota, Y. Shirota, and Y. Hagiwara: J Mater Process Tech., 2001, vol. 117, pp. 341-46.

    Article  Google Scholar 

  7. P. Cizek, B. Wynne, C. Davies, B. Muddle, and P. Hodgson: Metall Mater Trans A., 2002, vol. 33, pp. 1331-49.

    Article  Google Scholar 

  8. A. Kojima, Y. Watanabe, Y. Terada, A. Yoshie, and H. Tamehiro: ISIJ Int., 1996, vol. 36, pp. 603-10.

    Article  Google Scholar 

  9. H. Beladi, G.L. Kelly, A. Shokouhi, and P.D. Hodgson: Mat Sci Eng A-Struct., 2004, vol. 371, pp. 343-52.

    Article  Google Scholar 

  10. P.C.M. Rodrigues, E.V. Pereloma, and D.B. Santos: Mat Sci Eng A-Struct., 2000, vol. 283, pp. 136-43.

    Article  Google Scholar 

  11. C. Zener: Trans Amer Inst Metall Engrs., 1949, vol. 175, pp. 15-17.

    Google Scholar 

  12. P.L. Harrison and R.A. Farrar: J. Mater Sci., 1981, vol. 16, pp. 2218-26.

    Article  Google Scholar 

  13. J. Takamura and S. Mizoguchi: Proceedings of 6th International Iron and Steel Congress., Iron and Steel Institution Japan, Tokyo, 1990, vol. 01, pp. 591–95.

  14. S. Mizoguchi and J. Takamura: Proceedings of 6th International Iron and Steel Congress., Iron and Steel Institution Japan, Tokyo, 1990, vol. 01, pp. 598–604.

  15. H. Homma, S. Ohkita, S. Matsuda, and K. Yamamoto: Weld J., 1987, vol. 66, pp. 301-09.

    Google Scholar 

  16. Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, and K. Okamoto: ISIJ Int., 1994, vol. 34, pp. 829-35.

    Article  Google Scholar 

  17. K. Yamamoto, T. Hasegawa, and J. Takamura: ISIJ Int., 1996, vol. 36, pp. 80-86.

    Article  Google Scholar 

  18. J. Shim, Y.W. Chou, S.H. Chung, J. H. Shim, and D.N. Lee: Acta Mater., 1999, vol. 47, pp. 2751-60.

    Article  Google Scholar 

  19. J.S. Byun, J.H. Shim, Y.W. Chou, and D.N. Lee: Acta Mater., 2003, vol. 51, pp. 1593-1606.

    Article  Google Scholar 

  20. S.H. Nedjad and A. Farzaneh: Scripta Mater., 2007, vol. 57, pp. 937-40.

    Article  Google Scholar 

  21. R.A. Ricks, P.R. Howell, and G.S. Barritte: J. Mater Sci., 1982, vol. 17, pp. 732-40.

    Article  Google Scholar 

  22. S.S. Babu and S.A. David: ISIJ Int., 2002, vol. 42, pp. 1344-53.

    Article  Google Scholar 

  23. S. Talas and R.C. Cochrane: J. Alloys Compd., 2005, vol. 396, pp. 224-27.

    Article  Google Scholar 

  24. K. Nishioka and K. Ichikawa: Sci Technol Adv Mat., 2012, vol. 13, pp. 1-20.

    Google Scholar 

  25. M. Hasegawa and K. Takeshita: Metall Mater Trans B., 1978, vol. 09, pp. 383-88.

    Article  Google Scholar 

  26. M.Hasegawa and K. Takeshita: Tetsu-to-Hagané., 1976, vol. 62, pp. 201-09. (in Japanese).

    Google Scholar 

  27. M.Hasegawa and K.Takeshita: Tetsu-to-Hagané., 1977,vol. 63, pp. 294-302. (in Japanese).

    Google Scholar 

  28. M.Hasegawa and K. Takeshita: Bull. Jap. Inst. Metals., 1976, vol. 15, pp. 462-64. (in Japanese).

    Article  Google Scholar 

  29. J.M. Gregg and H.K.D.H. Bhadeshia: Acta Mater., 1997, vol. 45, pp. 739-48.

    Article  Google Scholar 

  30. G.C. Wang, T.M. Wang, S.N. Li, and K.M. Fang: Chinese Journal of Engineering., 2007, vol. 29, pp. 578-81. (in Chinese).

    Google Scholar 

  31. Z.D. Huang, J.P. Niu, Q.K. Cai, and L. Wang: Journal of Northeastern University., 2009, vol. 30, pp. 997-1000. (in Chinese).

    Google Scholar 

  32. B. Wen and B. Song: Steel Res Int., 2012, vol. 83, pp. 487-95.

    Article  Google Scholar 

  33. H.S. Kim, H.G. Lee, and K.S. Oh: Met Mater Int., 2000, vol. 06, pp. 305-10.

    Article  Google Scholar 

  34. C.S. Smith: Trans. AIME, 1948, vol. 175, pp. 15-51.

    Google Scholar 

  35. J.W. Christian: in Physical Metallurgy, 1 st ed., R.W. Cahn, ed., North-Holland Publishing Company, Amsterdam, 1977, pp. 479–580.

  36. W. Wang and L.M. Fu: Acta Metall Sin., 2008, vol. 44, pp. 723-28. (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the National Science Foundation of China (No. 51474076 and 51304016) and open fund of State Key Laboratory of Advanced Metallurgy (No.KF14-02 and KF14-06). Appreciation is also expressed to the Natural Sciences and Engineering Research Council of Canada for support of steel-related research at the University of Toronto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shufeng Yang.

Additional information

Manuscript submitted August 8, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Yang, S., Li, J. et al. Effects of MgO Nanoparticle Additions on the Structure and Mechanical Properties of Continuously Cast Steel Billets. Metall Mater Trans A 47, 461–470 (2016). https://doi.org/10.1007/s11661-015-3237-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3237-1

Keywords

Navigation