Skip to main content
Log in

Micropropagation of mature Quercus ilex L. trees by axillary budding

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

This paper reports the successful micropropagation of mature Quercus ilex trees known as reluctant to in vitro propagation. Crown branch segments collected from 30 to 100 year-old trees were forced in order to promote the production of sprouting shoots that were used as a source of explants for initiating the cultures. Sterilization was critical and required low-level disinfestation protocols. Six out of the eight mature genotypes attempted were successfully inoculated and then maintained in culture with varying responses. Shoot proliferation of holm oak was influenced by BA concentration, with improved multiplication and shoot appearance when the BA concentration was sequentially reduced over the culture period. Micropropagation by axillary budding was achieved by culturing shoots on a sequence of cytokinin-enriched Lloyd and McCown (WPM) media alternating 2 week-long subcultures on 0.44 µM benzyadenine (BA) first, followed by 0.22 µM BA, then 0.044 µM BA plus 0.46 µM zeatin. Sucrose concentration and agar brand affected shoot proliferation, and the best results were obtained on WPM medium supplemented with 8 g L−1 Sigma agar (A-1296; Sigma-Aldrich) and 30 g L−1 sucrose. Addition of 20 µM silver thiosulphate had a significant positive effect on the appearance and development of shoots with a higher number of shoots being healthy and showing reduced shoot tip necrosis and early senescence of leaves. The 18.8% of the microshoots obtained for one clone could be rooted within 15 days on a half-strength Murashige and Skoog medium containing 14.8 µM or 24.6 µM indole-3-butyric acid and 0.54 µM α-naphthalene acetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alaska-Kennedy Y, Yoshida H, Takahata Y (2005) Efficient plant regeneration from leaves of rapeseed (Brassica napus L.): the influence of AgNO3 and genotype. Plant Cell Rep 24:649–654

    Article  Google Scholar 

  • Bairu MW, Stirk WA, Dolezal K, Van Staden JV (2007) Optimizing the micropropagation protocol for the endangered Aloe polyphylla: can meta-polin and its derivates serve as replacement for benzyladenine and zeatin? Plant Cell Tissue Organ Cult 90:15–23

    Article  CAS  Google Scholar 

  • Ballester A, Vidal N, Vieitez AM (2009) Developmental stages during in vitro rooting of hardwood trees from material with juvenile and mature characteristics. In: Niemi K, Scagel C (eds) Adventitious root formation of forest trees and horticultural plants-from genes to applications. Research Signpost, Thiruvananthapuram, pp 277–296

    Google Scholar 

  • Ballester A, Corredoira E, Vieitez AM (2016) Limitations of somatic embryogenesis in hardwood trees. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative propagation of forest trees. National Institute of Forest Science (Nifos), Seoul, pp 56–74

    Google Scholar 

  • Benson E (2000) In vitro plant recalcitrance: an introduction. In Vitro Cell Dev Biol Plant 36:141–148

    Article  Google Scholar 

  • Blasco M, Barra A, Brisa C, Corredoira E, Segura J, Toribio M, Arrillaga I (2013) Somatic embryogenesis in holm oak male catkins. Plant Growth Regul 71:261–270

    Article  CAS  Google Scholar 

  • Bon MC, Riccardi F, Monteuuis O (1994) Influence of phase change within a 90-year-old Sequoia sempervirens on its in vitro organogenic capacity and protein patterns. Trees 8:283–287

    Article  Google Scholar 

  • Bonga JM (2017) Can explant choice help resolve recalcitrance problems in in vitro propagation, a problem still acute especially for adult conifers? Trees 31:781–789

    Article  CAS  Google Scholar 

  • Bonga JM, von Aderkas P (1992) In vitro culture of trees. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tiss Organ Cult 100:241–254

    Article  Google Scholar 

  • Burgos L, Alburquerque N (2003) Ethylene inhibitors and low kanamycin concentrations improve adventitious regeneration from apricot leaves. Plant Cell Rep 31:1167–1174

    Article  Google Scholar 

  • Corcobado T, Cubera E, Moreno G, Solla A (2013) Quercus ilex forests are influenced by annual variations in water table, soil water deficit and fine root loss caused by Phythophtora cinnamomi. Agric For Meteorol 169:92–99

    Article  Google Scholar 

  • Corredoira E, Ballester A, Vieitez AM (2008) Thidiazuron-induced high frequency plant regeneration from leaf explants of Paulownia tomentosa mature trees. Plant Cell Tiss Organ Cult 95:197–208

    Article  CAS  Google Scholar 

  • Corredoira E, San-José MC, Vieitez AM (2012) Induction of somatic embryogenesis from different explants of shoot cultures derived from young Quercus alba trees. Trees 26:881–891

    Article  Google Scholar 

  • Corredoira E, Ballester A, Ibarra M, Vieitez AM (2015) Induction of somatic embryogenesis in leaf and shoot apex explants of shoot cultures derived from adult Eucalyptus globulus and Eucalyptus saligna × E. maidenii trees. Tree Physiol 35:663–677

    Article  Google Scholar 

  • Correia S, Lopes ML, Canhoto JM (2011) Somatic embryogenesis induction system for cloning an adult Cyphomandra betacea (Cav.) Sendt. (tamarillo). Trees 25:1009–1020

    Article  Google Scholar 

  • Council of Europe, UNEP & ECNC (1996) The Pan-European biological and landscape diversity strategy: a vision for Europe’s natural heritage. European Centre for Nature Conservation, Tilburg

    Google Scholar 

  • Dal Vesco LL, Guerra MP (2001) The effectiveness of nitrogen sources in Feijoa somatic embryogenesis. Plant Cell Tiss Org Cult 64:19–25

    Article  CAS  Google Scholar 

  • Ďurkovič J, Mišalová A (2008) Micropropagation of temperate hardwoods: an overview. Funct Plant Sci 2:1–19

    Google Scholar 

  • El Kbiach ML, Lamarti A, Abdali A, Badoc A (2004) Micropropagation du Chêne-liège (Quercus suber L.) par bourgeonnement axillaire. Acta Bot Gallica 151:415–427

    Article  Google Scholar 

  • Gaspar T, Kevers C, Penel C, Greppin H, Reid DM, Thorpe TA (1996) Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell Dev Biol Plant 32:272–289

    Article  CAS  Google Scholar 

  • George EF, Debergh PC (2008) Micropropagation: uses and methods. In: George EF, Hall MA, de Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 29–64

    Google Scholar 

  • Gomes F, Canhoto JM (2009) Micropropagation of strawberry tree (Arbustus nedo L.) from adult plants. In Vitro Cell Dev Biol Plant 45:72–82

    Article  CAS  Google Scholar 

  • Gomes F, Simỡes M, Lopes ML, Canhoto JM (2010) Effect of plant growth regulators and genotype on the micropropagation of Arbutus unedo L. (strawberry tree). New Biotechnol 27:882–892

    Article  CAS  Google Scholar 

  • Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum. Planta 107:161–170

    Article  CAS  PubMed  Google Scholar 

  • Howell SH, Lall S, Che P (2003) Cytokinins and shoot development. Trends Plant Sci 8:453–459

    Article  CAS  PubMed  Google Scholar 

  • Huntsinger L, Campos P, Starrs PF, Oviedo JL, Díaz M, Standiford RB, Montero G (2013) Working landscapes of the spanish dehesa and the California oak woodlands: an introduction. In: Campos P, Huntsinger L, Oviedo JL et al (eds) Mediterranean oak woodland working landscapes. Springer, Dordrecht, pp 3–23

    Chapter  Google Scholar 

  • L´Helgoual’ch M, Espagnac H (1987) First observations on the adventitious rhizogenic capacity of holm oak (Quercus ilex L.). Ann Sci For 44:325–334

    Article  Google Scholar 

  • Liñan J, Cantos M, Troncoso J, García JL, Fernández A, Troncoso A (2011) Some propagation methods for cloning holm oak (Quercus ilex L.) plants. Cent Eur J Biol 6:359–364

    Google Scholar 

  • Liu X, Pijut P (2008) Plant regeneration from in vitro leaves of mature black cherry (Prunus serotina). Plant Cell Tiss Organ Cult 94:113–123

    Article  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Comb Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  • Martínez MT, Vidal N, Ballester A, Vieitez AM (2012) Improved organogenic capacity of shot cultures from mature pedunculate oak trees through somatic embryogenesis as rejuvenation technique. Trees 26:321–330

    Article  Google Scholar 

  • Martínez MT, Vieitez AM, Corredoira E (2015) Improved secondary embryo production in Quercus alba and Quercus rubra by activated charcoal, silver thiosulphate and sucrose: influence of embryogenic explant used for subculture. Plant Cell Tiss Organ Cult 212:531–546

    Article  Google Scholar 

  • Martínez MT, Vieitez AM, Corredoira E, Cernadas MJ, Montenegro R, Ballester A, Vieitez FJ, San José MC (2017) Vegetative propagation of adult Quercus ilex L. (holm oak) trees. I. Micropropagation by axillary budding. Plant Cell Tiss Organ Cult (in press)

  • Mauri PV, Manzanera JA (2005) Protocol of somatic embryogenesis: holm oak (Quercus ilex L.). In: Jain SM, Gupta PK (eds) Protocol for somatic embryogenesis in woody plants. Springer, Dordrecht, pp 469–482

    Chapter  Google Scholar 

  • McCown BH (2000) Recalcitrance of woody and herbaceous plants: dealing with genetic predeterminism. In vitro Cell Dev Biol Plant 36:149–154

    Article  Google Scholar 

  • Mesías FJ, Pulido F, Gaspar P, Escribano M, Pulido AF (2010) Management of Spanish rangelands (Dehesas): an example of sustainable use. In: Veress B, Szigethy J (eds) Horizons in earth science research, Vol 1. Nova Science Publishers, New York, pp 163–186

    Google Scholar 

  • Millán-Orozco L, Corredoira E, San José MC (2011) In vitro rhizogenesis: histoanatomy of Cedrela odorata (Meliaceae) microcuttings. Rev Biol Trop 59:447–453

    PubMed  Google Scholar 

  • Monteuuis O (2016) Micropropagation and production of forest trees. In: Park Y-S, Bonga JM, Moon H-K (eds) Vegetative propagation of forest trees. National Institute of Forest Science (NIFOS), Seoul, pp 32–55

    Google Scholar 

  • Monteuuis O, Doulbeau S, Verdeil JL (2008) DNA methylation in different origin clonal offspring from mature Sequoiadendron giganteum genotype. Trees 22:779–784

    Article  CAS  Google Scholar 

  • Moreno G, Pulido F (2009) The functioning, management, and persistence of dehesas. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe. Advances in agroforestry. Springer, Dordrecht, pp 127–160

    Google Scholar 

  • Moshkov IE, Novikova GV, Hall MA, George EF (2008) Plant growth regulators III: ethylene. In: George EF, Hall MA, de Klerk GJ (eds) Plant propagation by tissue culture, Vol 1, 3rd edn. Springer, Dordrecht, pp 239–248

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ostrolucká MG, Gajdosová A, Libiaková G (2007) Protocol for micropropagation of Quercus spp. In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, The Netherlands, pp 85–91

    Chapter  Google Scholar 

  • Park JS, Naing AH, Kim CK (2016) Effects of ethylene on shoot initiation, leaf yellowing, and shoot tip necrosis in rose. Plant Cell Tissue Organ Cult 127:425–431

    Article  CAS  Google Scholar 

  • Pereira-Netto AB, Petkowic CLO, Cruz-Silva TA, Gazzoni MT, Mello AFP, Silveira JLM (2007) Differential performance of marabakaido apple rootstock shoots grown in culture media containing different agar brands: dynamic rheological analysis. In vitro Cell Dev Biol Plant 43:356–363

    Article  CAS  Google Scholar 

  • Plieninger T, Pulido FJ, Schaich H (2004) Effects of land-use and landscape structure on holm oak recruitment and regeneration at farm level in Quercus ilex L. dehesas. J Arid Environ 57:345–364

    Article  Google Scholar 

  • Poothong S, Reed BM (2014) Modeling the effects of mineral nutrition for improving growth and development of micropropagated red raspberries. Sci Hort 165:132–141

    Article  CAS  Google Scholar 

  • Preece J (2008) Stock plant physiological factors affecting growth and morphogenesis. In: George EF, Hall MA, de Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 403–422

    Google Scholar 

  • Qin YH, Zhang SL, Zhang LX, Zhu DY, Syed A (2005) Response to in vitro strawberry to silver nitrate (AgNO3). HortScience 40:747–751

    CAS  Google Scholar 

  • Ramage CM, Williams RR (2002) Mineral nutrition and plant morphogenesis. In vitro Cell Dev Biol Plant 38:116–124

    Article  CAS  Google Scholar 

  • Reis LB, PaivaNeto VB, Toledo Picoli EA, Costa NGC, Rêgo MM, Carvalho CR, Finger FL, Otoni WC (2003) Axillary bud development of passion fruit as affected by ethylene precursor and inhibitors. In Vitro Cell Dev Biol Plant 39:618–622

    Article  CAS  Google Scholar 

  • Ruíz de la Torre J (2006) Flora mayor. Organismo Autónomo de Parques Nacionales. Dirección General para la Biodiversidad, Madrid

    Google Scholar 

  • San José MC, Vieitez AM, Ballester A (1990) Clonal propagation of juvenile and adult trees of sessile oak by tissue culture. Silvae Genet 39:50–55

    Google Scholar 

  • San José MC, Corredoira E, Martínez MT, Vidal N, Valladares S, Mallón R, Vieitez AM (2010) Shoot apex explants for induction of somatic embryogenesis in mature Quercus robur L. trees. Plant Cell Rep 29:661–67

    Article  PubMed  Google Scholar 

  • San José MC, Janeiro LV, Corredoira E (2013) Micropropagation of threatened black alder. Silva Fenn 47:1–12

    Article  Google Scholar 

  • Sánchez MC, Vieitez AM (1991) In vitro morphogenetic competence of basal sprouts and crown branches of mature chestnut. Tree Physiol 8:59–70

    Article  PubMed  Google Scholar 

  • Sánchez ME, Caetano P, Ferraz J, Trapero A (2002) Phytophthora diseases of Quercus ilex in south-western Spain. For Pathol 32:5–18

    Article  Google Scholar 

  • Schenk RU, Hildebrand AC (1972) Medium and techniques for induction of growth of monocotyledonous and dicotyledonous plant cell culture. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Scholten HJ, Pierik RLM (1998) Agar as a gelling: differential biological effects in vitro. Sci Hort 77:1009–1116

    Google Scholar 

  • SPSS for Windows (2010) Guía Breve de IBM SPSS Statistics 19.SPSS Inc., IBM Company, Chicago, IL, p. 171

    Google Scholar 

  • Steinitz B, Barr N, Tabib Y, Vaknin Y, Bernstein N (2010) Control of in vitro rooting and plant development in Corymbia maculate by silver nitrate, silver thiosulphate and thiosulphate ion. Plant Cell Rep 29:1315–1323

    Article  CAS  PubMed  Google Scholar 

  • Thorpe T, Stasolla C, Yeung EC, de Klerk G-J, Roberts A, George EF (2008) The components of plant tissue culture media II: organic additions, osmotic and pH effects, and support systems. In: George EF, Hall MA, de Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 115–174

    Google Scholar 

  • Van Staden J, Zazimalova E, George EF (2008) Plant growth regulators II: Cytokinins, their analogues and antagonists. In: George EF, Hall MA, de Klerk GJ (eds) Plant propagation by tissue culture, 3rd edn. Springer, Dordrecht, pp 205–226

    Google Scholar 

  • Vengadesan G, Pijut PM (2009) Somatic embryogenesis and plant regeneration of northern red oak (Quercus rubra L.). Plant Cell Tissue Organ Cult 97:141–149

    Article  Google Scholar 

  • Vidal N (2002) Relación entre el contenido endógeno de reguladores de crecimiento, el estado ontogenético y la capacidad de enraizamiento de brotes de castaño y roble cultivados in vitro. Tesis Doctoral. Universidad de Santiago de Compostela, Spain

    Google Scholar 

  • Vieitez AM, Ferro EM, Ballester A (1993a) Micropropagation of Fagus sylvatica L. In Vitro Cell Dev Biol Plant 29:183–188

    Article  Google Scholar 

  • Vieitez AM, Pintos F, San José MC, Ballester A (1993b) In vitro shoot proliferation determined by explant orientation of juvenile and mature Quercus rubra L. Tree Physiol 12:107–117

    Article  CAS  PubMed  Google Scholar 

  • Vieitez AM, Sánchez MC, Amomarco JB, Ballester A (1994) Forced flushing of branch segments as a method for obtaining reactive explants of mature Quercus robur trees for micropropagation. Plant Cell Tissue Organ Cult 37:287–295

    Google Scholar 

  • Vieitez AM, San José MC, Sánchez MC, Ballester A (2003) Micropropagation of Fagus spp. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer Academic Publishers, Netherlands, pp 181–215

    Chapter  Google Scholar 

  • Vieitez AM, Sánchez MC, García-Nimo ML, Ballester A (2007) Protocol for micropropagation of Castanea sativa Mill. In: Jain SM, Häggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Heidelberg, pp 299–312

    Chapter  Google Scholar 

  • Vieitez AM, Corredoira E, Ballester A, Muñoz F, Durán J, Ibarra M (2009) In vitro regeneration of important North American oak species Quercus alba, Quercus bicolor and Quercus rubra. PlantCellTissueOrganCult 98:135–145

    CAS  Google Scholar 

  • Vieitez AM, Corredoira E, Martínez MT, San José MC, Sánchez C, Valladares S, Vidal N, Ballester A (2012) Application of biotechnological tools to Quercus improvement. Eur J Forest Res 131:519–539

    Article  CAS  Google Scholar 

  • Wendling I, Trueman SJ, Xavier A (2014) Maturation and related aspects in clonal forestry-part II: reinvigoration, rejuvenation and juvenility maintenance. New For 45:473–486

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr M Toribio for kindly providing the plant material used in this study. We also thank JC Suárez San Martín for technical support.

Funding

This research has been partly funded by Ministerio de Economía y Competitividad, MINECO, Spain (AGL 2013-47400-C4-3R and AGL2016-76143-C4-4-R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. San José.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Paula M. Pijut.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, M.T., Corredoira, E., Vieitez, A.M. et al. Micropropagation of mature Quercus ilex L. trees by axillary budding. Plant Cell Tiss Organ Cult 131, 499–512 (2017). https://doi.org/10.1007/s11240-017-1300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1300-x

Keywords

Navigation