Skip to main content

Part of the book series: Forestry Sciences ((FOSC,volume 75))

Abstract

The genus Fagus,a member of the Fagaceae family, comprises ten species of moncecious trees native to the Northern Hemisphere Temperate Zone regions of Eurasia and Eastern North America. The name Fagus (related to Greek phagein, to eat) is a reference to the distinctive triangular nuts of these species, which are eaten by both wildlife and humans. The chief members of this genus are Fagus sylvatica L. (European beech), which is one of the economically most important deciduous trees of Central Europe and together with oaks defines the climax vegetation of this region; F. orientalis Lipski (Oriental beech), a native of the temperate regions of Eastern Europe, the Balkan peninsula, the Caucasus and Asia Minor; F. grandiflora Ehrh. (American beech), a native of Eastern North America that is both of great

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja M.R. 1983. Somatic cell differentiation and rapid clonal propagation of aspen. Silv Genet 32: 131–135.

    Google Scholar 

  • Ahuja M.R. 1984a. In vitro induction of organogenesis in juvenile and mature beech. Silv Genet 33: 241–242.

    Google Scholar 

  • Ahuja M.R. 1984b. Isolation and culture of mesophyll protoplasts from mature beech trees. Silv Genet 33: 37–39.

    Google Scholar 

  • Azmi A., Noin M., Landré P., Prouteau M., Boudet A.M. and Chriqui D. 1997. High frequency plant regeneration from Eucalyptus globulus Labill. hypocotyls: Ontogenesis and ploidy level of the regenerants. Plant Cell Tiss Org Cult 51: 9–16.

    Article  Google Scholar 

  • Barker M.J., Pijut P.M., Ostry M.E. and Houston D.R. 1997. Micropropagation of juvenile and mature American beech. Plant Cell Tiss Org Cult 51: 209–213.

    Article  Google Scholar 

  • Belaizi M. and Boxus P. 1995. In vitro shoot multiplication of cork oak (Quercus suber L.). Influence of different carbohydrates. Bull Rech Agron Gembloux 30: 39–46

    CAS  Google Scholar 

  • Bergmann B.A. and Stomp A.M. 1994. Effect of genotype on in vitro adventitious shoot formation in Pinus radiata and correlations between pairs of phenotypic traits during in vitro shoot development. Plant Cell Tiss Org Cult 39: 185–194.

    Article  Google Scholar 

  • Bonga J.M. and Von Aderkas P. 1992. In Vitro Culture of Trees. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Brown D.C.W. and Thorpe T.A. 1986. Plant regeneration by organogenesis. In: Vasil I.K. (Ed.), Cell Culture and Somatic Cell Genetics of Plants, Vol 3, pp 49–65. Academic Press, Orlando, FL.

    Google Scholar 

  • Ceballos L. and Ruiz de la Torre J. 1979. Arboles y Arbustos de la España Peninsular. Madrid: Escuela Técnica Superior de Ingenieros de Montes.

    Google Scholar 

  • Chalupa V. 1979. In vitro propagation of some broad-leaved forest trees. Commun Inst For Cech 11: 159–170.

    Google Scholar 

  • Chalupa V. 1982. Vegetative propagation of broadleaved trees by cuttings. Lesnictvi (Forestry) 28: 21–30.

    Google Scholar 

  • Chalupa V. 1985. In vitro propagation of Larix, Picea, Pinus, Quercus, Fagus and other species using adenine-type cytokinins and thidiazuron. Commun Inst For Cech 14: 65–90.

    Google Scholar 

  • Chalupa V. 1987a. European hardwoods. In: Bonga J.M. and Durzan D.J. (Eds.), Cell and Tissue Culture in Forestry, Vol 3, pp. 224–246. Martinus Nijhoff, Dordrecht.

    Chapter  Google Scholar 

  • Chalupa V. 1987b. Somatic embryogenesis and plant regeneration in Picea,Quercus, Betula, Tilia, Robinia, Fagus and Aesculus. Commun Inst For Cech 15: 133–148.

    Google Scholar 

  • Chalupa V. 1996. Fagus sylvatica L. (European Beech). In: Bajaj Y.P.S. (Ed.), Biotechnology in Agriculture and Forestry, Vol 35, Trees IV, pp. 138–154. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Chauvin J.E. and Salesses G. 1988. Effect du fructose sur la micropropagation du châtaignier Castanea sp. C R Acad Sci Paris 306 Série III: 207–212.

    Google Scholar 

  • Coleman G.D. and Ernst S.G. 1989. In vitro shoot regeneration of Populus deltoides: effect of cytokinin and genotype. Plant Cell Rep 8: 459–462.

    Article  CAS  Google Scholar 

  • Cornu D., Delran S., Garbaye J. and Le Tacon F. 1977. Recherche des meilleures conditions d’enracinement des boutures herbaceés de chêne rouvre (Quercus petraea (M.) Liebl.) et de hêtre (Fagus sylvatica L.). Ann Sci For (Paris) 34: 1–16.

    Google Scholar 

  • Cuenca B. and Viéitez A.M. 1999. Histological study of in vitro development of adventitious buds on leaf explants of Oriental beech (Fagus orientalis Lipsky). In Vitro Cell Dev Biol Plant 35: 326–332.

    Article  Google Scholar 

  • Cuenca B, and Viéitez A.M. 2000. Influence of carbon source on shoot multiplication and adventitious bud regeneration in in vitro beech cultures. Plant Growth Regul 32: 1–12.

    Article  CAS  Google Scholar 

  • Cuenca B., Ballester A. and Viéitez A.M. 2000. In vitro adventitious bud regeneration from internode segments of beech. Plant Cell Tiss Org Cult 60: 213–220.

    Article  CAS  Google Scholar 

  • Driver J.A. and Kuniyuki A.H. 1984. In vitro propagation of paradox walnut rootstock. HortScience 19: 507–509.

    Google Scholar 

  • Eapen S., Tivarekar S. and George L. 1998. Thidiazuron-induced shoot regeneration in pigeonpea (Cajanus cajan L.). Plant Cell Tiss Org Cult 53: 217–220.

    Article  CAS  Google Scholar 

  • Engelman F. 1997. In vitro conservation research activities at the International Plant Genetic Resources Institute (IPGRI). Plant Tissue Cult Biotech 3: 46–52.

    Google Scholar 

  • Flinn B.S., Webb D.T. and Newcomb W. 1988. The role of cell clusters and promeristemoids in determination and competence for caulogenesis by Pinus strobus cotyledons in vitroCan J Bot.66: 1556–1565

    Article  Google Scholar 

  • Gautheret R.J. 1959. La Culture des Tissues Végétaux. Paris: Masson et Cie.

    Google Scholar 

  • Gebbardt K. and Weisgerber H. 1990. Viability and in vitro growth of shoot tips from adult beech. Abstr VIIth Int Congr Plant Tissue Cell Cult, IAPTC, Amsterdam, pp 101.

    Google Scholar 

  • Gresshoff P.M. and Doy C.H. 1972. Development and differentiation of haploid Lycopersicon esculentum. Planta 107: 161–170.

    Article  Google Scholar 

  • Huetteman C.A. and Preece J.E. 1993. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss Org Cult 33: 105–119.

    Article  CAS  Google Scholar 

  • Jordan M., Velozo J. and Sabja A.M. 1996. Organogenesis in vitro of Nothofagus alpina (P. et E.) Oerst., Fagaceae. Plant Cell Rep 15: 795–798.

    Article  CAS  Google Scholar 

  • Jorgensen J. 1988. Embryogenesis in Quercus petraea and Fagus sylvatica. J Plant Physiol 132: 638–640.

    Article  Google Scholar 

  • Jorgensen J. 1990. Conservation of valuable gene resources by cryopreservation in some forest tree species. J Plant Physiol 136: 373–376.

    Article  Google Scholar 

  • Jorgensen J. 1991. Androgenesis in Quercus petraea,Fagus sylvatica and Aesculus hippocastanum. In: Ahuja M.R. (Ed.), Woody Plant Biotechnology, pp 353–354. Plenum Press, New York.

    Chapter  Google Scholar 

  • Kao K.N. and Michayluk M.R. 1975. Nutritional requirements for growth of Vicia hajastana cells and protoplasts at very low population density in liquid media. Planta 126: 105–110.

    Article  CAS  Google Scholar 

  • Lainé E. and David A. 1994. Regeneration of plants from leaf explants of micropropagated clonal Eucalyptus grandis. Plant Cell Rep 13: 473–476.

    Article  Google Scholar 

  • Lang H. and Kohlenbach H.W. 1988. Callus formation from mesophyll protoplasts of Fagus sylvatica L. Plant Cell Rep 7: 485–488.

    Article  Google Scholar 

  • Lloyd G. and McCown B.H. 1980. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture. Comb Proc hit Plant Propagators’ Society 30: 421–427.

    Google Scholar 

  • Meier K. and Reuther G. 1994. Factors controlling micropropagation of mature Fagus sylvatica. Plant Cell Tiss Org Cult 39: 231–238.

    Article  Google Scholar 

  • Munthali M.T., Newbury H.J. and Ford-Lloyd B.V. 1996. The detection of somaclonal variants of beet using RAPD. Plant Cell Rep 15: 474–478.

    Article  CAS  Google Scholar 

  • Murashige T. and Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497.

    Article  CAS  Google Scholar 

  • Murch S.J., Krishnaraj S. and Saxena P.K. 1997. TDZ-induced morphogenesis of Regal Geranium (Pelargonium domesticum): a potential stress response. Physiol Plant 101: 183–191.

    Article  CAS  Google Scholar 

  • Murthy B.N.S., Murch S.J. and Saxena P.K. 1998. Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34: 267–275.

    Article  CAS  Google Scholar 

  • Nadel B.L., Altman A., Pleban S. and Hüttermann A. 1991a. In vitro development of mature Fagus sylvatica L. buds. I. The effect of medium and plant growth regulators on bud growth and protein profiles. J Plant Physiol 138: 596–601.

    Article  CAS  Google Scholar 

  • Nadel B.L., Altman A., Pleban S., Kocks R. and Hüttermann A. 1991b. In vitro development of mature Fagus sylvatica L. buds. II. Seasonal changes in the response to plant growth regulators. J Plant Physiol 138: 136–141.

    Article  CAS  Google Scholar 

  • Pawlicki N. and Welander M. 1994. Adventitious shoot regeneration from leaf segments of in vitro cultured shoots of the apple rootstock Jork 9. J Hortic Sci 69: 687–696.

    Google Scholar 

  • Pence V.C. 1990. Cryostorage of embryo axes of several large-seeded temperate tree species. Cryobiology 27: 212–218.

    Article  Google Scholar 

  • Romano A.. Noronha C. and Martins-Louçao M.A. 1995. Role of carbohydrates in micropropagation of cork oak. Plant Cell Tiss Org Cult 40: 159–167.

    Article  CAS  Google Scholar 

  • Schenk R.U. and Hildebrandt A.C. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50: 199–204.

    Article  CAS  Google Scholar 

  • Tang W. 2001. In vitro regeneration of loblolly pine and random amplified polymorphic DNA analyses of regenerated plantlets. Plant Cell Rep 20: 163–168.

    Article  CAS  Google Scholar 

  • Thiébaut B., Cuguen J. and Dupré S. 1985. Architecture des jeunes hêtres (Fagus sylvatica L.). Can J Bot 63: 21–2110.

    Article  Google Scholar 

  • Thiébaut B., Comps B. and Teissier du Cros E. 1990. Dévelopement des axes des arbres: pousse annuelle, syllepsie et prolepsie chez le Hêtre (Fagus sylvatica). Can J Bot 68: 202–211.

    Article  Google Scholar 

  • Thorpe T.A. and Kumar P.P. 1993. Cellular control of morphogenesis. In: Ahuja M.R. (Ed.), Micropropagation of Woody Plants, pp. 11–29. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Torregrosa L. and Bouquet A. 1996. Adventitious bud formation and shoot development from in vitro leaves of Titis x Muscadinia hybrids. Plant Cell Tiss Org Cult 45: 245–252.

    Article  CAS  Google Scholar 

  • Viéitez A.M. and San-José M.C. 1996. Adventitious shoot regeneration from Fagus sylvatica leaf explants in vitro. In Vitro Cell Dev Biol Plant 32: 140–147.

    Article  Google Scholar 

  • Viéitez A.M., San-José M.C. and Viéitez E. 1985. In vitro plantlet regeneration from juvenile and mature Quercus robur L. J Hortic Sci 60: 99–106.

    Google Scholar 

  • Viéitez A.M., Ferro E.M. and Ballester A. 1993. Micropropagation of Fagus sylvatica L. In Vitro Cell Dev Biol 29P: 183–188.

    Google Scholar 

  • Viéitez A.M., Ballester A., Viéitez M.L. and Viéitez E. 1983. In vitro plantlet regeneration of mature chestnut. J Hortic Sci 58: 457–463.

    Google Scholar 

  • Viéitez F.J., Ballester A. and Viéitez A.M. 1992. Somatic embryogenesis and plantlet regeneration from cell suspension cultures of Fagus sylvatica L. Plant Cell Rep 11: 609–613.

    Article  Google Scholar 

  • Zimmermann M.H. and Ziegler H. 1975. List of sugars and sugar alcohols in sieve-tube exudates. In: Zimmermann M.H. and Milburn J.A. (Eds.), Encyclopedia of Plant Physiology. New Series Vol 1, Transport in Plants I, pp. 480–503. Springer-Verlag, Berlin, Heidelberg, New York.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Viéitez, A.M., San-José, M.C., Sánchez, M.C., Ballester, A. (2003). MICROPROPAGATION OF Fagus spp.. In: Jain, S.M., Ishii, K. (eds) Micropropagation of Woody Trees and Fruits. Forestry Sciences, vol 75. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0125-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0125-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3964-2

  • Online ISBN: 978-94-010-0125-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics