Skip to main content
Log in

Maturation and related aspects in clonal forestry—part II: reinvigoration, rejuvenation and juvenility maintenance

  • Review
  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Several techniques have been developed for reinvigorating, rejuvenating or maintaining the juvenility of plants. None of these techniques is as effective as natural rejuvenation whereby the most mature plant parts, the reproductive organs, produce the most juvenile plant parts, the embryos, through gametogenesis and sexual reproduction. The most common criteria for identifying reinvigoration or rejuvenation are based on morphology, morphogenic capacity and the ability to produce cones or flowers. Doubts remain over whether true rejuvenation (reduced ontogenetic age) can be achieved by artificial methods such as serial vegetative propagation, or whether these methods merely provide reinvigoration (reduced physiological age) by temporarily removing environmental and physiological constraints to growth. Rejuvenation and reinvigoration are difficult to distinguish from each other but there is some evidence that artificial methods provide at least partial rejuvenation of plants. This review examines methods for delaying the maturation of juvenile plants and for reducing the ontogenetic or physiological age of more-mature plants. The review discusses theoretical and practical aspects of juvenility, rejuvenation and reinvigoration in clonal forestry, and identifies research areas in maturation that could lead to more-effective methods for establishing high-productivity plantations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aimers-Halliday J, Menzies MI, Faulds T, Holden DG, Low CB, Dibley MJ (2003) Nursery systems to control maturation in Pinus radiata cuttings, comparing hedging and serial propagation. N Z J For Sci 33:135–155

    Google Scholar 

  • Andrade WF (2010) Indução de rejuvenescimento de teca (Tectona grandis L. f) através de enxertia seriada e micropropagação. Thesis, Universidade de São Paulo, São Paulo

  • Arnaud Y, Franclet A, Tranvan H, Jacques M (1993) Micropropagation and rejuvenation of Sequoia sempervirens (Lamb) Endl: a review. Ann Sci For 50:273–295

    Google Scholar 

  • Aronen TS, Krajnakova J, Häggman HM, Ryynänen LA (1999) Genetic fidelity of cryopreserved embryogenic cultures of open-pollinated Abies cephalonica. Plant Sci 142:163–172

    CAS  Google Scholar 

  • Assis TF, Mafia RG (2007) Hibridação e clonagem. In: Borém A (ed) Biotecnologia florestal. Suprema, Viçosa, pp 93–121

    Google Scholar 

  • Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory and practice. Crit Rev Plant Sci 27:141–219

    CAS  Google Scholar 

  • Bettinger P, Clutter M, Siry J, Kane M, Pait J (2009) Broad implications of southern United States pine clonal forestry on planning and management of forests. Int For Rev 11:331–345

    Google Scholar 

  • Bond BJ, Czarnomski NM, Cooper C, Day ME, Greenwood MS (2007) Developmental decline in height growth in Douglas-fir. Tree Physiol 27:441–453

    PubMed  Google Scholar 

  • Bonga JC (1987) Clonal propagation of mature trees: problems and possible solutions. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry, general principles and biotechnology. Martinus Nijhoff, Dordrecht, pp 249–271

    Google Scholar 

  • Bonga JM, von Aderkas P (1992) In vitro culture of trees. Kluwer Academic, Dordrecht

    Google Scholar 

  • Bonga JM, von Aderkas P (1993) Rejuvenation of tissues from mature conifers and its implications for propagation in vitro. In: Ahuja MR, Libby WJ (eds) Clonal forestry I, genetics and biotechnology. Springer, Berlin, pp 182–199

    Google Scholar 

  • Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult 100:241–254

    Google Scholar 

  • Brand MH, Lineberger RD (1992a) In vitro rejuvenation of Betulaceae: morphological evaluation. Am J Bot 79:618–625

    Google Scholar 

  • Brand MH, Lineberger RD (1992b) In vitro rejuvenation of Betulaceae: biochemical evaluation. Am J Bot 79:626–635

    CAS  Google Scholar 

  • Burrows GE (2013) Buds, bushfires and resprouting in the eucalypts. Aust J Bot 61:331–349

    Google Scholar 

  • Cameron R, Harrison-Murray R, Fordham M, Judd H, Ford Y, Marks T, Edmondson R (2003) Rooting cuttings of Syringa vulgaris cv. Charles Joly and Corylus avellana cv. Aurea: the influence of stock plant pruning and shoot growth. Trees 17:451–462

    Google Scholar 

  • Clair JS, Kleinschmit J, Svolba J (1985) Juvenility and serial vegetative propagation of Norway spruce clones (Picea abies Karst). Silvae Genet 34:42–48

    Google Scholar 

  • Copes DL (1983) Effects of annual crown pruning and serial propagation on rooting of stem cuttings from Douglas-fir. Can J For Res 13:419–424

    Google Scholar 

  • Copes DL (1992) Effects of long-term pruning, meristem origin, and branch order on the rooting of Douglas-fir stem cuttings. Can J For Res 22:1888–1894

    Google Scholar 

  • Danthu P, Hane B, Sagna P, Gassama YK (2002) Restoration of rooting competence in mature Faidherbia albida, a Sahelian leguminous tree, through serial root sucker micrografting. New For 24:239–244

    Google Scholar 

  • Day ME, Greenwood MS, White AS (2001) Age related changes in foliar morphology and physiology in red spruce and their influence on declining photosynthetic rates and productivity with tree age. Tree Physiol 21:1195–1204

    CAS  PubMed  Google Scholar 

  • Dekker-Robertson DL, Kleinschmit J (1991) Serial propagation in Norway spruce (Picea abies): results from the later propagations cycles. Silvae Genet 40:202–214

    Google Scholar 

  • Eldridge K, Davidson J, Harwood C, Wyk G (1994) Mass vegetative propagation. In: Eldridge K, Davidson J, Harwood C (eds) Eucalypt domestication and breeding. Clarendon Press, Oxford

    Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev Biol Plant 40:427–433

  • Ewald D, Kretzschmar U (1996) The influence of micrografting in vitro on tissue culture behavior and vegetative propagation of old European larch trees. Plant Cell Tissue Organ Cult 44:249–252

    Google Scholar 

  • Fraga MF, Rodríguez R, Cañal MJ (2002) Genomic DNA methylation–demethylation during ageing reinvigoration of Pinus radiata. Tree Physiol 22:813–816

    CAS  PubMed  Google Scholar 

  • Franclet A, Boulay M, Bekkaoui F, Fouret Y, Verschoore-Martouzet B, Walker N (1987) Rejuvenation. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. Martinus Nijhoff, Dordrecht, pp 232–248

    Google Scholar 

  • Funnekotter B, Kaczmarczyk A, Turner SR, Bunn E, Zhou W, Smith S, Flematti G, Mancera RL (2013) Acclimation-induced changes in cell membrane composition and influence on cryotolerance of in vitro shoots of native plant species. Plant Cell Tissue Organ Cult 114:83–96

    CAS  Google Scholar 

  • Gale S, John A, Harding K, Benson EE (2008) Developing cryopreservation for Picea sitchensis (Sitka spruce) somatic embryos: a comparison of vitrification protocols. Cryoletters 29:135–144

    PubMed  Google Scholar 

  • George EF (1993) Plant propagation by tissue culture. Part 1. The technology. Exegetics, Edington

    Google Scholar 

  • Giovannelli A, Giannini R (2000) Reinvigoration of mature chestnut (Castanea sativa) by repeated graftings and micropropagation. Tree Physiol 20:1243–1248

    PubMed  Google Scholar 

  • Greenwood MS (1995) Juvenility and maturation in conifers: current concepts. Tree Physiol 15:433–438

    PubMed  Google Scholar 

  • Greenwood MS, Hutchinson KW (1993) Maturation as a developmental process. In: Ahuja MR, Libby WJ (eds) Clonal forestry I: genetics and biotechnology. Springer, Berlin, pp 14–33

    Google Scholar 

  • Greenwood MS, Day ME, Schatz J (2010) Separating the effects of tree size and meristem maturation on shoot development of grafted scions of red spruce (Picea rubens Sarg.). Tree Physiol 30:459–468

    PubMed  Google Scholar 

  • Hackett WP (1987a) Juvenility and maturity. In: Bonga JM, Durzan DJ (eds) Cell and tissue culture in forestry. Martinus Nijhoff, Dordrecht, pp 216–231

    Google Scholar 

  • Hackett WP (1987b) Donor plant maturation and adventitious root formation. In: Davies T, Haissig B, Sankhla N (eds) Adventitious root formation in cuttings. Dioscorides Press, Portland, pp 11–28

    Google Scholar 

  • Haines R, Walker S (1993) Maturation questions relating to clonal forestry. In: Clonal forestry workshop. Queensland Forest Research Institute, Gympie, Australia, pp 1–14

  • Hamann A (1998) Adventitious root formation in cuttings of loblolly pine (Pinus taeda L.): developmental sequence and effects of maturation. Trees 12:175–180

    Google Scholar 

  • Hand P, Besford RT, Richardson CM, Peppit SD (1996) Antibodies to phase related proteins in juvenile and mature Prunus avium. Plant Growth Regul 20:25–29

    CAS  Google Scholar 

  • Hargreaves CL, Grace LJ, Holden DG (2002) Nurse culture for efficient recovery of cryopreserved Pinus radiata D. Don embryogenic cell lines. Plant Cell Rep 21:40–45

    CAS  Google Scholar 

  • Hargreaves CL, Reeves CB, Find JI, Gough K, Josekutty P, Skudder DB, van der Maas SA, Sigley MR, Menzies MI, Low CB, Mullin TJ (2009) Improving initiation, genotype capture, and family representation in somatic embryogenesis of Pinus radiata by a combination of zygotic embryo maturity, media, and explant preparation. Can J For Res 39:1566–1574

    Google Scholar 

  • Hartmann HT, Kester DE, Davies Junior FT, Geneve RL (2011) Plant propagation: principles and practices. Prentice-Hall, New Jersey

    Google Scholar 

  • Högberg KA, Dutkowski GW (2010) Genetic correlations among field trials of Norway spruce clones representing different propagation cycles. Silvae Genet 59:182–189

    Google Scholar 

  • Huang LC, Chow TY, Tseng TC, Kuo CI, Liu SM, Ngoh MG, Murashige T, Huang HJ (2003) Association of mitochondrial plasmids with rejuvenation of the coastal redwood, Sequoia sempervirens (D. Don) Endl. Bot Bull Acad Sin 44:25–30

    CAS  Google Scholar 

  • Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117–4129

    CAS  PubMed  Google Scholar 

  • Hung CD, Trueman SJ (2011) Encapsulation technology for short-term preservation and germplasm distribution of the African mahogany Khaya senegalensis. Plant Cell Tissue Organ Cult 107:397–405

    CAS  Google Scholar 

  • Hung CD, Trueman SJ (2012a) Alginate encapsulation of shoot tips and nodal segments for short-term storage and distribution of the eucalypt Corymbia torelliana × C. citriodora. Acta Physiol Plant 34:117–128

    CAS  Google Scholar 

  • Hung CD, Trueman SJ (2012b) Preservation of encapsulated shoot tips and nodes of the tropical hardwoods Corymbia torelliana × C. citriodora and Khaya senegalensis. Plant Cell Tissue Organ Cult 109:341–352

    Google Scholar 

  • Husen A, Pal M (2003) Effect of serial bud grafting and etiolation on rejuvenation and rooting of mature trees of Tectona grandis Linn. f. Silvae Genet 52:84–88

    Google Scholar 

  • Jones OP, Welander M, Waller BJ, Ridout MS (1996) Micropropagation of adult birch trees: production and field performance. Tree Physiol 16:521–525

    PubMed  Google Scholar 

  • Klimaszewska K, Trontin J-F, Becwar MR, Devillard C, Park Y-S, Lelu-Walter M-A (2007) Recent progress in somatic embryogenesis of four Pinus spp. Tree For Sci Biotechnol 1:11–25

    Google Scholar 

  • Krakowski J, Benowicz A, Russell JH, El-Kassaby YA (2005) Effects of serial propagation, donor age, and genotype on Chamaecyparis nootkatensis physiology and growth traits. Can J For Res 35:623–632

    Google Scholar 

  • Kretzschmar U, Ewald D (1994) Vegetative propagation of 140-year-old Larix decidua trees by different in vitro techniques. Plant Physiol 144:627–630

    CAS  Google Scholar 

  • Lardet L (1987) Amélioration des conditions du microbouturage de l’Hevea brasiliensis Müll. Arg. Thesis, Université des Sciences et Techniques du Languedoc, Montpellier

  • Lynch PT, Benson EE, Harding K (2007) Climate change: the role of ex situ and cryo-conservation in the future security of economically important, vegetatively propagated plants. J Hortic Sci Biotechnol 82:157–160

    Google Scholar 

  • Majada J, Martínez-Alonso C, Feito I, Kidelman A, Aranda I, Alía R (2011) Mini-cuttings: an effective technique for the propagation of Pinus pinaster Ait. New For 41:399–412

    Google Scholar 

  • Mankessi F, Saya AR, Favreau B, Doulbeau S, Conéjéro G, Lartaud M, Verdeil L-L, Monteuuis O (2011) Variations of DNA methylation in Eucalyptus urophylla × Eucalyptus grandis shoot tips and apical meristems of different physiological ages. Physiol Plant 143:178–187

    CAS  PubMed  Google Scholar 

  • Marco-Medina A, Casas JL (2012) Polyamine content during minimal growth storage of Thymus moroderi explants. Biol Plant 56:590–594

    CAS  Google Scholar 

  • Maruyama E, Kinoshita I, Ishii K, Ohba K, Saito A (2007a) Germplasm conservation of the tropical forest trees, Cedrela odorata L., Guazuma crinita Mart., and Jacaranda mimosaefolia D. Don., by shoot tip encapsulation in calcium-alginate and storage at 12–25 °C. Plant Cell Rep 16:393–396

    Google Scholar 

  • Maruyama E, Kinoshita I, Ishii K, Shigenaga H, Ohba K, Saito A (2007b) Alginate-encapsulated technology for the propagation of the tropical forest trees: Cedrela odorata L., Guazuma crinita Mart., and Jacaranda mimosaefolia D. Don. Silvae Genet 46:17–23

    Google Scholar 

  • Mason WL, Menzies MI, Biggin P (2002) A comparison of hedging and repeated cutting cycles for propagating clones of Sitka spruce. Forestry 75:149–162

    Google Scholar 

  • McMahon TV, Hung CD, Trueman SJ (2013) In vitro storage delays the maturation of African mahogany (Khaya senegalensis) clones. J Plant Sci 8:31–38

    Google Scholar 

  • McMahon TV, Hung CD, Trueman SJ (2014) Clonal maturation of Corymbia torelliana × C. citriodora is delayed by minimal growth storage. Aust For 77:9–14

    Google Scholar 

  • Meier AR, Saunders MR, Michler CH (2012) Epicormic buds in trees: a review of bud establishment, development and dormancy release. Tree Physiol 32:565–584

    PubMed  Google Scholar 

  • Menzies MI, Dibley MJ, Faulds T, Aimers-Halliday J, Holden DG (2000) Morphological markers of physiological age for Pinus radiata. N Z J For Sci 30:359–364

    Google Scholar 

  • Mitchell RG, Jones NB (2006) The effects of ontogenetic maturation in Pinus patula—part II: hedge cycling and field performance. S Afr For J 207:3–6

    Google Scholar 

  • Mitchell RG, Zwolinski J, Jones NB (2004a) A review on the effects of donor maturation on rooting and field performance of conifer cuttings. S Afr For J 201:53–63

    Google Scholar 

  • Mitchell RG, Zwolinski J, Jones NB (2004b) The effects of ontogenetic maturation in Pinus patula—part I: nursery performance. S Afr For J 202:29–36

    Google Scholar 

  • Moon HK, Yi JS (1993) Cutting propagation of Quercus acutissima clones after rejuvenation through serial grafting. Ann Sci For 50:314–318

    Google Scholar 

  • Murayama MY, Ferrari MP (1993) Propagação vegetativa pinheiros tropicais. Rev Silv 13:12–14

    Google Scholar 

  • Nas M, Read PE, Rutter AP (2003) In vitro “rejuvenation” of woody species is temporary. Acta Hortic 625:211–215

    Google Scholar 

  • Nikles DG, Dieters MJ, Johnson MJ, Setia Wati YGB, Doley D (2002) The reproductive biology of hoop pine (Araucaria cunninghamii) and its significance in a genetic improvement programme. In: Bieleski RL, Wilcox MD (eds) International araucariaceae symposium. International Dendrochronology Symposium, Auckland, pp 157–165

    Google Scholar 

  • Nunes EC, Benson EE, Oltramari AC, Araujo PS, Moser JR, Viana AM (2003) In vitro conservation of Cedrela fissilis Vellozo (Meliaceae), a native tree of the Brazilian Atlantic Forest. Biodivers Conserv 12:837–848

    Google Scholar 

  • Oliveira LS (2011) Micropropagação, microestaquia e miniestaquia de clones híbridos de Eucalyptus globulus. Dissertation, Universidade Federal de Viçosa, Viçosa

  • Padayachee K, Watt MP, Edwards N, Mycock DJ (2009) Cryopreservation as a tool for the conservation of Eucalyptus genetic variability: concepts and challenges. South For 71:165–170

    Google Scholar 

  • Peña-Ramírez YJ, Juárez-Gómez J, Gómez-López L, Jerónimo-Pérez JL, García-Sheseña I, González-Rodríguez JA, Robert ML (2010) Multiple adventitious shoot formation in Spanish Red Cedar (Cedrela odorata L.) cultured in vitro using juvenile and mature tissues: an improved micropropagation protocol for a highly valuable tropical tree species. In Vitro Cell Dev Biol Plant 46:149–160

    Google Scholar 

  • Perrin Y, Doumas P, Lardet L (1997) Endogenous cytokinins as biochemical markers of rubber-tree (Hevea brasiliensis) clone rejuvenation. Plant Cell Tissue Organ Cult 47:239–245

    Google Scholar 

  • Pijut PM, Woeste KE, Michler CH (2011) Promotion of adventitious root formation of difficult-to-root hardwood tree species. Hortic Rev 38:213–251

    CAS  Google Scholar 

  • Pohio KE, Wallace HM, Peters RF, Smith TE, Trueman SJ (2005) Wollemi pine cuttings tolerate moderate photoinhibition and remain highly capable of root formation. Trees 19:587–595

    Google Scholar 

  • Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants—a review. Biotechnol Adv 27:671–679

    PubMed  Google Scholar 

  • Read PE, Bavougian CM (2013) In vitro rejuvenation of woody species. In: Lambardi M, Ozudogru EA, Jain SM (eds) Protocols for micropropagation of selected economically-important horticultural plants. Humana Press, New York, pp 383–395

    Google Scholar 

  • Rebbeck J, Jensen KF, Greenwood MS (1993) Ozone effects on grafted mature and juvenile red spruce: photosynthesis, stomatal conductance, and chlorophyll concentration. Can J For Res 23:450–456

    CAS  Google Scholar 

  • Renau-Morata B, Arrillaga I, Segura J (2006) In vitro storage of cedar shoot cultures under minimal growth conditions. Plant Cell Rep 25:636–642

    CAS  PubMed  Google Scholar 

  • Rosier CL, Frampton J, Goldfarb B, Wise FC, Blazich FA (2005) Stumping height, crown position, and age of parent tree influence rooting of stem cuttings of Fraser fir. HortScience 40:771–777

    Google Scholar 

  • Sánchez MC, Ballester A, Vieitez AM (1997) Reinvigoration treatments for the micropropagation of mature chestnut trees. Ann Sci For 54:359–370

    Google Scholar 

  • Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology—a complete synthesis. Biotechnol Adv 31:186–207

    CAS  PubMed  Google Scholar 

  • Siniscalco C, Pavolettoni L (1988) Rejuvenation of Eucalyptus trabutii by successive grafting. Acta Hortic 227:98–100

    Google Scholar 

  • Titon M, Xavier A, Otoni WC (2002) Dinâmica do enraizamento de microestacas e miniestacas de clones de Eucalyptus grandis. Rev Árv 26:665–673

    Google Scholar 

  • Titon M, Xavier A, Otoni WC, Reis GG (2003) Efeito do AIB no enraizamento de miniestacas e microestacas de clones de Eucalyptus grandis W. Hill ex Maiden. Rev Árv 27:1–7

    Google Scholar 

  • Titon M, Xavier A, Otoni WC (2006) Clonal propagation of Eucalyptus grandis using the mini-cutting and micro-cuttings techniques. Sci For 71:109–117

    Google Scholar 

  • Touchell DH, Chiang VL, Tsai C-J (2002) Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21:118–124

    CAS  Google Scholar 

  • Trueman SJ (2006) Clonal propagation and storage of subtropical pines in Queensland, Australia. S Afr For J 208:49–52

    Google Scholar 

  • Trueman SJ, Peters RF (2006) Propagation of Wollemi pine from tip cuttings and lower segment cuttings does not require rooting hormones. Sci Hortic 109:394–397

    CAS  Google Scholar 

  • Trueman SJ, Pegg GS, King J (2007) Domestication for conservation of an endangered species: the case of the Wollemi pine. Tree For Sci Biotechnol 1:1–10

    Google Scholar 

  • Valdés AE, Centeno ML, Fernández B (2003) Changes in the branching pattern of Pinus radiata derived from grafting are supported by variations in the hormonal content. Plant Sci 165:1397–1401

    Google Scholar 

  • von Aderkas P, Bonga JM (2000) Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiol 20:921–928

    Google Scholar 

  • Wang J-W, Park MY, Wang L-J, Koo Y, Chen X-Y, Weigel D, Poethig RS (2011) MiRNA control of vegetative phase change in trees. PLoS Genet 7:e1002012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watt MP, Thokoane NL, Mycock D, Blakeway F (2000) In vitro storage of Eucalyptus grandis germplasm under minimal growth conditions. Plant Cell Tissue Organ Cult 61:161–164

    Google Scholar 

  • Wendling I, Xavier A (2005) Influência do ácido indolbutírico e da miniestaquia seriada no vigor radicular de clones de Eucalyptus grandis. Rev Árv 29:681–689

    Google Scholar 

  • Wendling I, Xavier A, Paiva HN (2003) Influência da miniestaquia seriada no vigor de minicepas de clones de Eucalyptus grandis. Rev Árv 27:611–618

    Google Scholar 

  • Wendling I, Dutra LF, Grossi F (2007) Produção e sobrevivência de miniestacas e minicepas de erva-mate cultivadas em sistema semi-hidropônico. Pesq Agropec Bras 42:289–292

    Google Scholar 

  • Wendling I, Dutra LF, Bettio G, Hansel F (2009) Indução de brotações epicórmicas ortotrópicas para a propagação vegetativa de árvores adultas de Araucaria angustifolia. Agron Costarric 33:309–319

    Google Scholar 

  • Wendling I, Brondani GE, Biassio AD, Dutra LF (2013) Vegetative propagation of adult Ilex paraguariensis trees through epicormic shoots. Acta Sci Agron 35:117–125

    CAS  Google Scholar 

  • Wendling I, Trueman SJ, Xavier A (2014) Maturation and related aspects in clonal forestry—part I: concepts, regulation and consequences of phase change (companion paper). doi:10.1007/s11056-014-9421-0

  • Weng Y, Park YS, Lindgren D (2012) Unequal clonal deployment improves genetic gains at constant diversity levels for clonal forestry. Tree Genet Genomes 8:77–85

    Google Scholar 

  • Woodford J (2002) The Wollemi pine. Text Publishing, Melbourne

    Google Scholar 

  • Xavier A, Comério J (1996) Microestaquia: uma maximização da micropropagação de Eucalyptus. Rev Árv 20:9–16

    Google Scholar 

  • Xavier A, Comério J, Iannelli CM (1997) Eficiência da estaquia, da microestaquia e da micropropagação na clonagem de Eucalyptus spp. In: IUFRO conference on silviculture and improvement of Eucalyptus. Embrapa, Colombo, pp 40–45

  • Xavier A, Andrade HB, Oliveira MD, Wendling I (2001) Desempenho do enraizamento de microestacas e miniestacas de clones de híbrido de Eucalyptus grandis. Rev Árv 25:403–411

    Google Scholar 

  • Xavier A, Wendling I, Silva RL (2013) Silvicultura clonal—princípios e técnicas. Editora UFV, Viçosa

    Google Scholar 

  • Zaczek JJ, Steiner KC, Heuser CW Jr, Tzilkowski WM (2006) Effects of serial grafting, ontogeny, and genotype on rooting of Quercus rubra cuttings. Can J For Res 36:123–131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivar Wendling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendling, I., Trueman, S.J. & Xavier, A. Maturation and related aspects in clonal forestry—part II: reinvigoration, rejuvenation and juvenility maintenance. New Forests 45, 473–486 (2014). https://doi.org/10.1007/s11056-014-9415-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-014-9415-y

Keywords

Navigation