Skip to main content
Log in

Feasibility of thermal methods on screening, characterization and physicochemical evaluation of pharmaceutical cocrystals

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pharmaceutical cocrystals, an important multi-component complex compressing at least two molecules linked by noncovalent bonds within the same crystal lattice, have shown a great promise in development of new drugs by improving their physicochemical properties of active pharmaceutical ingredients, such as solubility, dissolution rate, stability, permeability, tabletability and bioavailability. Consequently, they have substantially benefited the pharmaceutical industry, since many APIs in preclinical stage exhibit poor solubility or permeability, with 90% of all new drugs classified as Biopharmaceutics Classification System II/IV classes. At present, various instrumental-based methods, such as X-ray diffraction, thermal methods, nuclear magnetic resonance, Fourier transform infrared spectroscopy and Raman spectroscopy, have been developed to identify and characterize pharmaceutical cocrystals. Among them, the thermal method is a fast, economical and solvent-free technique for cocrystals’ study. In the present work, the authors review various thermal analyses used in the characterization of pharmaceutical cocrystals including differential thermal analysis, differential scanning calorimetry, temperature-modulated differential scanning calorimetry, thermogravimetric analysis, dynamic vapor sorption, hot-stage microscopy, thermal micro-Raman spectroscopy, hot-melt extrusion and thermal hyphenated technologies. The advantages of thermal analysis used in solid-state pharmaceuticals were highlighted. The future trend of thermal analysis application in pharmaceutical cocrystals was summarized.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Basavaraj S, Betageri GV. Can formulation and drug delivery reduce attrition during drug discovery and development-review of feasibility, benefits and challenges. Acta Pharm Sin B. 2014. https://doi.org/10.1016/j.apsb.2013.12.003.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dai XL, Chen JM, Lu TB. Pharmaceutical cocrystallization: an effective approach to modulate the physicochemical properties of solid-state drugs. CrystEngComm. 2018. https://doi.org/10.1039/c8ce00707a.

    Article  Google Scholar 

  3. Poovi G, Damodharan N. Lipid nanoparticles: a challenging approach for oral delivery of BCS Class-II drugs. Futur J Pharm Sci. 2018. https://doi.org/10.1016/j.fjps.2018.04.001.

    Article  Google Scholar 

  4. Li S, Yan D. Tuning light-driven motion and bending in macroscale-flexible molecular crystals based on a cocrystal approach. ACS Appl Mater Inter. 2018. https://doi.org/10.1021/acsami.8b05804.

    Article  Google Scholar 

  5. Ye Y, Gao L, Hao H, Yin Q, Xie C. Tuning the photomechanical behavior and excellent elasticity of azobenzene via cocrystal engineering. CrystEngComm. 2020. https://doi.org/10.1039/d0ce01394c.

    Article  Google Scholar 

  6. Luo Y, Chen S, Zhou J, Chen J, Tian L, Gao W, Zhang Y, Ma A, Li L, Zhou Z. Luteolin cocrystals: characterization, evaluation of solubility, oral bioavailability and theoretical calculation. J Drug Deliv Sc Tec. 2019. https://doi.org/10.1016/j.jddst.2019.02.004.

    Article  Google Scholar 

  7. Xu J, Huang Y, Ruan S, Chi Z, Qin K, Cai B, Cai T. Cocrystals of isoliquiritigenin with enhanced pharmacokinetic performance. CrystEngComm. 2016. https://doi.org/10.1039/c6ce01809b.

    Article  Google Scholar 

  8. Huang S, Xue Q, Xu J, Ruan S, Cai T. Simultaneously improving the physicochemical properties, dissolution performance, and bioavailability of apigenin and daidzein by co-crystallization with theophylline. J Pharm Sci. 2019. https://doi.org/10.1016/j.xphs.2019.04.017.

    Article  PubMed  Google Scholar 

  9. Santos JAB, Chaves Júnior JV, Araújo Batista RS, Sousa DP, Ferreira GLR, Lima Neto SA, Santana Oliveira A, Souza FS, Aragão CFS. Preparation, physicochemical characterization and solubility evaluation of pharmaceutical cocrystals of cinnamic acid. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-09708-6.

    Article  Google Scholar 

  10. Zhou ZZ, Li W, Sun WJ, Lu T, Tong HHY, Sun CC, Zheng Y. Resveratrol cocrystals with enhanced solubility and tabletability. Int J Pharmaceut. 2016. https://doi.org/10.1016/j.ijpharm.2016.06.006.

    Article  Google Scholar 

  11. Kavanagh ON, Croker DM, Walker GM, Zaworotko MJ. Pharmaceutical cocrystals: from serendipity to design to application. Drug Discov Today. 2019. https://doi.org/10.1016/j.drudis.2018.11.023.

    Article  PubMed  Google Scholar 

  12. Thipparaboina R, Kumar D, Chavan RB, Shastri NR. Multidrug co-crystals: towards the development of effective therapeutic hybrids. Drug Discov Today. 2016. https://doi.org/10.1016/j.drudis.2016.02.001.

    Article  PubMed  Google Scholar 

  13. Duggirala NK, Perry ML, Almarsson O, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun. 2016. https://doi.org/10.1039/c5cc08216a.

    Article  Google Scholar 

  14. Almarsson O, Peterson ML, Zaworotko M. The A to Z of pharmaceutical cocrystals: a decade of fast-moving new science and patents. Pharm Pat Anal. 2012. https://doi.org/10.4155/ppa.12.29.

    Article  PubMed  Google Scholar 

  15. Singaraju AB, Bahl D, Wang C, Swenson DC, Sun CC, Stevens LL. Molecular interpretation of the compaction performance and mechanical properties of caffeine cocrystals: a polymorphic study. Mol Pharmaceut. 2020. https://doi.org/10.1021/acs.molpharmaceut.9b00377.

    Article  Google Scholar 

  16. Zhou FY, Zhou JL, Zhang HL, Tong HHY, Nie JJ, Li L, Zhang YY, Du J, Ma AD, Yang XM, Zhou ZZ. Structure determination and in vitro/vivo study on carbamazepine-naringenin (1:1) cocrystal. J Drug Deliv Sci Tec. 2019. https://doi.org/10.1016/j.jddst.2019.101244.

    Article  Google Scholar 

  17. Almeida AC, Ferreira PO, Torquetti C, Ekawa B, Carvalho ACS, Santos EC, Caires FJ. Mechanochemical synthesis, characterization and thermal study of new cocrystals of ciprofloxacin with pyrazinoic acid and p-aminobenzoic acid. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08958-3.

    Article  Google Scholar 

  18. Xuan B, Wong SN, Zhang Y, Weng J, Tong HHY, Wang C, Sun CC, Chow SF. Extended release of highly water soluble isoniazid attained through cocrystallization with curcumin. Cryst Growth Des. 2020. https://doi.org/10.1021/acs.cgd.9b01619.

    Article  Google Scholar 

  19. Chow SF, Chen M, Shi L, Chow AH, Sun CC. Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharm Res. 2012. https://doi.org/10.1007/s11095-012-0709-5.

    Article  PubMed  Google Scholar 

  20. Babu NJ, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Des. 2011. https://doi.org/10.1021/cg200492w.

    Article  Google Scholar 

  21. Biscaia IFB, Gomes SN, Bernardi LS, Oliveira PR. Obtaining cocrystals by reaction crystallization method: Pharmaceutical applications. Pharmaceutics. 2021. https://doi.org/10.3390/pharmaceutics13060898.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Buddhadev SS, Garala KC. Pharmaceutical cocrystals—a review, proceedings, 2021; https://doi.org/10.3390/proceedings2020062014.

  23. Huang D, Chan HCS, Wu Y, Li L, Zhang L, Lv Y, Yang X, Zhou ZZ. Phase solubility investigation and theoretical calculations on drug-drug cocrystals of carbamazepine with Emodin, Paeonol. J Mol Liq. 2021. https://doi.org/10.1016/j.molliq.2021.115604.

    Article  Google Scholar 

  24. Wong SN, Hu S, Ng WW, Xu X, Lai KL, Lee WYT, Chow AHL, Sun CC, Chow SF. Cocrystallization of curcumin with benzenediols and benzenetriols via rapid solvent removal. Cryst Growth Des. 2018. https://doi.org/10.1021/acs.cgd.8b00849.

    Article  Google Scholar 

  25. Guo M, Sun X, Chen J, Cai T. Pharmaceutical cocrystals: a review of preparations, physicochemical properties and applications. Acta Pharm Sin B. 2021. https://doi.org/10.1016/j.apsb.2021.03.030.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Malamatari M, Ross SA, Douroumis D, Velaga SP. Experimental cocrystal screening and solution based scale-up cocrystallization methods. Adv Drug Deliv Rev. 2017. https://doi.org/10.1016/j.addr.2017.08.006.

    Article  PubMed  Google Scholar 

  27. Wang X, Du S, Zhang R, Jia X, Yang T, Zhang X. Drug-drug cocrystals: opportunities and challenges. Asian J Pharm Sci. 2021. https://doi.org/10.1016/j.ajps.2020.06.004.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Heng T, Yang D, Wang R, Zhang L, Lu Y, Du G. Progress in research on artificial intelligence applied to polymorphism and cocrystal prediction. ACS Omega. 2021. https://doi.org/10.1021/acsomega.1c01330.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mohammad MA, Alhalaweh A, Velaga SP. Hansen solubility parameter as a tool to predict cocrystal formation. Int J Pharmaceut. 2011. https://doi.org/10.1016/j.ijpharm.2011.01.030.

    Article  Google Scholar 

  30. Yang D, Wang H, Liu Q, Yuan P, Chen T, Zhang L, Yang S, Zhou Z, Lu Y, Du G. Structural landscape on a series of rhein: Berberine cocrystal salt solvates: the formation, dissolution elucidation from experimental and theoretical investigations. Chinese Chem Lett. 2021. https://doi.org/10.1016/j.cclet.2021.10.012.

    Article  Google Scholar 

  31. Yamashita H, Hirakura Y, Yuda M, Teramura T, Terada K. Detection of cocrystal formation based on binary phase diagrams using thermal analysis. Pharm Res. 2012. https://doi.org/10.1007/s11095-012-0850-1.

    Article  PubMed  Google Scholar 

  32. Park B, Yoon W, Yun J, Ban E, Yun H, Kim A. Emodin-nicotinamide (1:2) cocrystal identified by thermal screening to improve emodin solubility. Int J Pharmaceut. 2019. https://doi.org/10.1016/j.ijpharm.2018.12.027.

    Article  Google Scholar 

  33. Lu E, Rodríguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. CrystEngComm. 2008. https://doi.org/10.1039/b801713c.

    Article  Google Scholar 

  34. Lever T, Haines P, Rouquerol J, Charsley EL, Van Eckeren P, D.J. Burlett, ICTAC nomenclature of thermal analysis (IUPAC Recommendations 2014), Pure Appl Chem, 2014; https://doi.org/10.1515/pac-2012-0609.

  35. Thomas LC, Schmidt SJ, Thermal Analysis, in: S.S. Nielsen (Ed.) Food Analysis, Springer International Publishing, Cham; 2017.

  36. The United States Pharmacopeia Convention. The United States Pharmacopeia: General Chapters.41th Edition. Rockville: The United States Pharmacopeia Convention; 2018.

  37. Convention on the Elaboration of a European Pharmacopoeia. European Pharmacopoeia. 10th Edition. Strasbourg: European Directorate for the Quality of Medicines & HealthCare of the Council of Europe (EDQM); 2019.

  38. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China (2020). Beijing: China Medical Science Press; 2020.

    Google Scholar 

  39. Zhou ZZ, Chan HM, Sung HHY, Tong HHY, Zheng Y. Identification of new cocrystal systems with stoichiometric diversity of salicylic acid using thermal methods. Pharm Res. 2016. https://doi.org/10.1007/s11095-015-1849-1.

    Article  PubMed  Google Scholar 

  40. Gajda M, Nartowski KP, Pluta J, Karolewicz B. Tuning the cocrystal yield in matrix-assisted cocrystallisation via hot melt extrusion: a case of theophylline-nicotinamide cocrystal. Int J Pharmaceut. 2019. https://doi.org/10.1016/j.ijpharm.2019.118579.

    Article  Google Scholar 

  41. Zhou H, Wang Y, Li S, Lu M. Improving chemical stability of resveratrol in hot melt extrusion based on formation of eutectic with nicotinamide. Int J Pharmaceut. 2021. https://doi.org/10.1016/j.ijpharm.2021.121042.

    Article  Google Scholar 

  42. Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharmaceut. 2011. https://doi.org/10.1016/j.ijpharm.2011.07.037.

    Article  Google Scholar 

  43. Narala S, Nyavanandi D, Srinivasan P, Mandati P, Bandari S, Repka MA. Pharmaceutical co-crystals, salts, and co-amorphous systems: a novel opportunity of hot melt extrusion. J Drug Deliv Sci Tec. 2021. https://doi.org/10.1016/j.jddst.2020.102209.

    Article  Google Scholar 

  44. Knopp MM, Lobmann K, Elder DP, Rades T, Holm R. Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development. Eur J Pharm Sci. 2016. https://doi.org/10.1016/j.ejps.2015.12.024.

    Article  PubMed  Google Scholar 

  45. Haines PJ, Reading M, Wilburn FW. Chapter 5 - Differential thermal analysis and differential scanning calorimetry, in: M.E. Brown (Ed.) Handbook of thermal analysis and calorimetry, Elsevier Science B.V.; 1998.

  46. Ozawa T. Thermal analysis — review and prospect. Thermochim Acta. 2000. https://doi.org/10.1016/S0040-6031(00)00435-4.

    Article  Google Scholar 

  47. Boersma SL. A theory of differential thermal analysis and new methods of measurement and interpretation. J Am Ceram Soc. 1955. https://doi.org/10.1111/j.1151-2916.1955.tb14945.x.

    Article  Google Scholar 

  48. Qi S. Thermal analysis of pharmaceuticals, in: analytical techniques in the pharmaceutical sciences; 2016.

  49. Thomas LC. Use of multiple heating rate DSC and modulated temperature DSC to detect and analyze temperature-time-dependent transitions in materials. Am lab (Fairfield). 2001;33:26–31.

    CAS  Google Scholar 

  50. Jiang Z, Imrie CT, Hutchinson JM. An introduction to temperature modulated differential scanning calorimetry (TMDSC): a relatively non-mathematical approach. Thermochim Acta. 2002. https://doi.org/10.1016/S0040-6031(01)00829-2.

    Article  Google Scholar 

  51. Mossety-Leszczak B, Kisiel M, Lechowicz JB, Buszta N, Ostatek R, Włodarska M. Analysis of curing reaction of liquid-crystalline epoxy compositions by using temperature-modulated DSC TOPEM®. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08193-w.

    Article  Google Scholar 

  52. Fraga I, Montserrat S, Hutchinson JM. TOPEM, a new temperature modulated DSC technique - application to the glass transition of polymers. J Therm Anal Calorim. 2007. https://doi.org/10.1007/s10973-006-7969-4.

    Article  Google Scholar 

  53. Simon SL. Temperature-modulated differential scanning calorimetry: theory and application. Thermochim Acta. 2001. https://doi.org/10.1016/s0040-6031(01)00493-2.

    Article  Google Scholar 

  54. Moseson DE, Corum ID, Lust A, Altman KJ, Hiew TN, Eren A, Nagy ZK, Taylor LS. Amorphous solid dispersions containing residual crystallinity: competition between dissolution and matrix crystallization. AAPS J. 2021. https://doi.org/10.1208/s12248-021-00598-6.

    Article  PubMed  Google Scholar 

  55. Bottom R. Thermogravimetric analysis, In: Principles and applications of thermal analysis; 2008.

  56. Sheokand S, Modi SR, Bansal AK. Dynamic vapor sorption as a tool for characterization and quantification of amorphous content in predominantly crystalline materials. J Pharm Sci. 2014;103:3364–76. https://doi.org/10.1002/jps.24160.

    Article  CAS  PubMed  Google Scholar 

  57. Menard NR, Menard KP, Hyphenated techniques in thermal analysis, In: Encyclopedia of analytical chemistry; 2018.

  58. Zhou J, Li L, Zhang H, Xu J, Huang D, Gong N, Han W, Yang X, Zhou Z. Crystal structures, dissolution and pharmacokinetic study on a novel phosphodiesterase-4 inhibitor chlorbipram cocrystals. Int J Pharmaceut. 2020. https://doi.org/10.1016/j.ijpharm.2019.118984.

    Article  Google Scholar 

  59. Shi Q, Cai T. Fast crystal growth of amorphous griseofulvin: relations between bulk and surface growth modes. Cryst Growth Des. 2016. https://doi.org/10.1021/acs.cgd.6b00252.

    Article  Google Scholar 

  60. Gupta P, Karothu DP, Ahmed E, Naumov P, Nath NK. Thermally twistable, photobendable, elastically deformable, and self-healable soft crystals. Angew Chem Int Ed Engl. 2018. https://doi.org/10.1002/anie.201802785.

    Article  PubMed  Google Scholar 

  61. Eddleston MD, Sivachelvam S, Jones W. Screening for polymorphs of cocrystals: a case study. CrystEngComm. 2013. https://doi.org/10.1039/c2ce26496j.

    Article  Google Scholar 

  62. Szelagiewicz M, Marcolli C, Cianferani S, Hard AP, Vit A, Burkhard A, von Raumer M, Hofmeier UC, Zilian A, Francotte E, Schenker R. In situ characterization of polymorphic forms, the potential of Raman techniques. J Therm Anal Calorim. 1999. https://doi.org/10.1023/a:1010184805966.

    Article  Google Scholar 

  63. Li J, Li J, Liu H, Zhang L, Lu Y, Zhou Z. Structural landscape investigations on bendable plastic crystals of isonicotinamide polymorphs. Chin Chem Lett. 2022. https://doi.org/10.1016/j.cclet.2022.03.090.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pindelska E, Sokal A, Kolodziejski W. Pharmaceutical cocrystals, salts and polymorphs: advanced characterization techniques. Adv Drug Deliv Rev. 2017. https://doi.org/10.1016/j.addr.2017.09.014.

    Article  PubMed  Google Scholar 

  65. Gunn E, Guzei IA, Cai T, Yu L. Polymorphism of Nifedipine: crystal structure and reversible transition of the metastable β polymorph. Cryst Growth Des. 2012. https://doi.org/10.1021/cg3000075.

    Article  Google Scholar 

  66. Ou X, Li X, Rong H, Yu L, Lu M. A general method for cultivating single crystals from melt microdroplets. Chem Commun. 2020. https://doi.org/10.1039/d0cc03157g.

    Article  Google Scholar 

  67. Petersen M, Yu Z, Lu X. Application of Raman spectroscopic methods in food safety: a review. Biosens-Basel. 2021. https://doi.org/10.3390/bios11060187.

    Article  Google Scholar 

  68. Guerain M, Guinet Y, Correia NT, Paccou L, Danede F, Hedoux A. Polymorphism and stability of ibuprofen/nicotinamide cocrystal: the effect of the crystalline synthesis method. Int J Pharmaceut. 2020. https://doi.org/10.1016/j.ijpharm.2020.119454.

    Article  Google Scholar 

  69. Lu M, Guo Z, Li Y, Pang H, Lin L, Liu X, Pan X, Wu C. Application of hot melt extrusion for poorly water-soluble drugs: limitations, advances and future prospects. Curr Pharm Des. 2014. https://doi.org/10.2174/13816128113199990402.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tambe S, Jain D, Agarwal Y, Amin P. Hot-melt extrusion: Highlighting recent advances in pharmaceutical applications. J Drug Deliv Sci Tec. 2021. https://doi.org/10.1016/j.jddst.2021.102452.

    Article  Google Scholar 

  71. Liu X, Lu M, Guo Z, Huang L, Feng X, Wu C. Improving the chemical stability of amorphous solid dispersion with cocrystal technique by hot melt extrusion. Pharm Res. 2012. https://doi.org/10.1007/s11095-011-0605-4.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Patil H, Tiwari RV, Repka MA. Hot-melt extrusion: from theory to application in pharmaceutical formulation. AAPS PharmSciTech. 2016. https://doi.org/10.1208/s12249-015-0360-7.

    Article  PubMed  Google Scholar 

  73. Liu HJ, Lin HQ, Zhou ZZ, Li L. Bergenin-isonicotinamide (1:1) cocrystal with enhanced solubility and investigation of its solubility behavior. J Drug Deliv Sci Tec. 2021. https://doi.org/10.1016/j.jddst.2021.102556.

    Article  Google Scholar 

  74. Lu Q, Dun J, Chen JM, Liu S, Sun CC. Improving solid-state properties of berberine chloride through forming a salt cocrystal with citric acid. Int J Pharmaceut. 2019. https://doi.org/10.1016/j.ijpharm.2018.10.062.

    Article  Google Scholar 

  75. Huang D, Yang D, Lv Y, Zhou J, Li L, Xu J, Yang X, Zhou ZZ. Lattice water provides hydrogen atom donor to form hydrate: A case study of chlorbipram: m-hydroxybenzoic acid (1:1) cocrystal. J Mol Struct. 2021. https://doi.org/10.1016/j.molstruc.2021.131891.

    Article  Google Scholar 

  76. Holanda BBC, Alarcon RT, Gaglieri C, de Souza AR, Castro RAE, Rosa PCP, Tangerino DJA, Bannach G. Thermal studies, degradation kinetic, equilibrium solubility, DFT, MIR, and XRPD analyses of a new cocrystal of gemfibrozil and isonicotinamide. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7873-8.

    Article  Google Scholar 

  77. Fujita M, Izato Y, Miyake A. Thermal and evolved gas analyses on Michael addition oligomers of acrylic acid. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-10412-8.

    Article  Google Scholar 

  78. Panzade PS, Shendarkar GR, Kulkarni DA. Hot melt extrusion: an emerging green technique for the synthesis of high-quality pharmaceutical cocrystals. J Pharm Innov. 2020. https://doi.org/10.1007/s12247-020-09512-7.

    Article  Google Scholar 

  79. Liu H, Nie J, Chan HCS, Zhang H, Li L, Lin H, Tong HHY, Ma A, Zhou ZZ. Phase solubility diagrams and energy surface calculations support the solubility enhancement with low hygroscopicity of Bergenin: 4-Aminobenzamide (1: 1) cocrystal. Int J Pharmaceut. 2021. https://doi.org/10.1016/j.ijpharm.2021.120537.

    Article  Google Scholar 

  80. Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des. 2009. https://doi.org/10.1021/cg900129f.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Karki S, Friščić T, Jones W. Control and interconversion of cocrystal stoichiometry in grinding: stepwise mechanism for the formation of a hydrogen-bonded cocrystal. CrystEngComm. 2009. https://doi.org/10.1039/b812531g.

    Article  Google Scholar 

  82. Ferreira PO, de Moura A, de Almeida AC, dos Santos ÉC, Kogawa AC, Caires FJ. Mechanochemical synthesis, thermoanalytical study and characterization of new multicomponent solid forms of norfloxacin with saccharin. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-021-10658-w.

    Article  Google Scholar 

  83. Myz SA, Mikhailenko MA, Mikhailovskaya AV, Bulina NV, Gerasimov KB, Politov AA, Kuznetsova SA, Shakhtshneider TP. Cocrystals of betulin with adipic acid: preparation and thermal behavior. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-021-11107-4.

    Article  Google Scholar 

  84. Zhou ZZ, Calatayud M, Contreras-Garcia J, Li L, Tong HHY, Zheng Y. X-ray diffraction and theoretical calculation-supported formation of polymorphic cocrystals discovered through thermal methods: a case study. J Pharm Sci. 2019. https://doi.org/10.1016/j.xphs.2019.05.019.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Evora AO, Castro RA, Maria TM, Silva MR, Ter Horst JH, Canotilho J, Eusebio ME. A thermodynamic based approach on the investigation of a diflunisal pharmaceutical co-crystal with improved intrinsic dissolution rate. Int J Pharmaceut. 2014. https://doi.org/10.1016/j.ijpharm.2014.02.048.

    Article  Google Scholar 

  86. Vasilev NA, Surov AO, Voronin AP, Drozd KV, Perlovich GL. Novel cocrystals of itraconazole: Insights from phase diagrams, formation thermodynamics and solubility. Int J Pharmaceut. 2021. https://doi.org/10.1016/j.ijpharm.2021.120441.

    Article  Google Scholar 

  87. Yamashita H, Hirakura Y, Yuda M, Terada K. Coformer screening using thermal analysis based on binary phase diagrams. Pharm Res. 2014. https://doi.org/10.1007/s11095-014-1296-4.

    Article  PubMed  Google Scholar 

  88. Pal S, Roopa BN, Abu K, Manjunath SG, Nambiar S. Thermal studies of furosemide–caffeine binary system that forms a cocrystal. J Therm Anal Calorim. 2014. https://doi.org/10.1007/s10973-013-3031-5.

    Article  Google Scholar 

  89. Manin AN, Drozd KV, Surov AO, Churakov AV, Volkova TV, Perlovich GL. Identification of a previously unreported co-crystal form of acetazolamide: a combination of multiple experimental and virtual screening methods. Phys Chem Chem Phys. 2020. https://doi.org/10.1039/d0cp02700f.

    Article  PubMed  Google Scholar 

  90. Sathisaran I, Dalvi SV. Engineering cocrystals of poorly water-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics. 2018. https://doi.org/10.3390/pharmaceutics10030108.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Barrio M, Ceolin R, Robert B, Allouchi H, Teulon JM, Guechot C, Tamarit JL, Rietveld IB. The solid state of anti-inflammatory morniflumate diniflumate: a cocrystalline salt. Int J Pharmaceut. 2021. https://doi.org/10.1016/j.ijpharm.2021.121224.

    Article  Google Scholar 

  92. Chow SF, Shi L, Ng WW, Leung KHY, Nagapudi K, Sun CC, Chow AHL. Kinetic entrapment of a hidden curcumin cocrystal with phloroglucinol. Cryst Growth Des. 2014. https://doi.org/10.1021/cg5007007.

    Article  Google Scholar 

  93. Cortesão AM, Henriques JG, Castro RAE, Maria TMR, Canotilho J, Eusébio MES. Binary phase diagrams of pyridinecarboxamide isomers. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6474-2.

    Article  Google Scholar 

  94. Carareto NDD, Castagnaro T, Costa MC, Meirelles AJA. The binary (solid+liquid) phase diagrams of (caprylic or capric acid)+(1-octanol or 1-decanol). J Chem Thermodyn. 2014. https://doi.org/10.1016/j.jct.2014.06.011.

    Article  Google Scholar 

  95. White MA, Perry RT. Melting behavior in binary compounds: inclusion compounds as examples of congruent vs incongruent melting. Chem Mater. 1994. https://doi.org/10.1021/cm00041a008.

    Article  Google Scholar 

  96. McNamara DP, Childs SL, Giordano J, Iarriccio A, Cassidy J, Shet MS, Mannion R, O’Donnell E, Park A. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res. 2006. https://doi.org/10.1007/s11095-006-9032-3.

    Article  PubMed  Google Scholar 

  97. Kumar A, Singh P, Nanda A. Hot stage microscopy and its applications in pharmaceutical characterization. Appl Microsc. 2020. https://doi.org/10.1186/s42649-020-00032-9.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lekšić E, Pavlović G, Meštrović E. Cocrystals of Lamotrigine based on coformers involving carbonyl group discovered by hot-stage microscopy and DSC screening. Cryst Growth Des. 2012. https://doi.org/10.1021/cg201426z.

    Article  Google Scholar 

  99. McArdle P, Erxleben A. Sublimation – a green route to new solid-state forms. CrystEngComm. 2021. https://doi.org/10.1039/d1ce00715g.

    Article  Google Scholar 

  100. Ford KA, Ebisuzaki Y, Boyle PD. Methylxanthines. II. Anhydrous theobromine. Acta Crystallogr C. 1998. https://doi.org/10.1107/s0108270198009469.

    Article  Google Scholar 

  101. Szell PMJ, Gabriel SA, Caron-Poulin E, Jeannin O, Fourmigué M, Bryce DL. Cosublimation: a rapid route toward otherwise inaccessible halogen-bonded architectures. Cryst Growth Des. 2018. https://doi.org/10.1021/acs.cgd.8b01089.

    Article  Google Scholar 

  102. Ye X, Liu Y, Han Q, Ge C, Cui S, Zhang L, Zheng X, Liu G, Liu J, Liu D, Tao X. Microspacing in-air sublimation growth of organic crystals. Chem Mater. 2018. https://doi.org/10.1021/acs.chemmater.7b04170.

    Article  Google Scholar 

  103. Ye X, Liu Y, Guo Q, Han Q, Ge C, Cui S, Zhang L, Tao X. 1D versus 2D cocrystals growth via microspacing in-air sublimation. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-08712-1.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chang SY, Sun CC. Superior plasticity and tabletability of theophylline monohydrate. Mol Pharmaceut. 2017. https://doi.org/10.1021/acs.molpharmaceut.7b00124.

    Article  Google Scholar 

  105. Hu S, Mishra MK, Sun CC. Twistable pharmaceutical crystal exhibiting exceptional plasticity and tabletability. Chem Mater. 2019. https://doi.org/10.1021/acs.chemmater.9b00441.

    Article  PubMed  Google Scholar 

  106. Zhang K, Sun CC, Liu Y, Wang C, Shi P, Xu J, Wu S, Gong J. Structural origins of elastic and 2D plastic flexibility of molecular crystals investigated with two polymorphs of conformationally rigid coumarin. Chem Mater. 2021. https://doi.org/10.1021/acs.chemmater.0c04560.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Trask AV, Motherwell WD, Jones W. Solvent-drop grinding: green polymorph control of cocrystallisation. Chem Commun. 2004. https://doi.org/10.1039/b400978a.

    Article  Google Scholar 

  108. Shimono K, Kadota K, Tozuka Y, Shimosaka A, Shirakawa Y, Hidaka J. Kinetics of co-crystal formation with caffeine and citric acid via liquid-assisted grinding analyzed using the distinct element method. Eur J Pharm Sci. 2015. https://doi.org/10.1016/j.ejps.2015.05.017.

    Article  PubMed  Google Scholar 

  109. Padrela L, de Azevedo EG, Velaga SP. Powder X-ray diffraction method for the quantification of cocrystals in the crystallization mixture. Drug Dev Ind Pharm. 2012. https://doi.org/10.3109/03639045.2011.633263.

    Article  PubMed  Google Scholar 

  110. Staub H, Perron W. New method of purity determination by means of calorimetric differential thermal analysis. Anal Chem. 1974. https://doi.org/10.1021/ac60337a039.

    Article  Google Scholar 

  111. Faroongsarng D, Kadejinda W, Sunthornpit A. Thermal behavior of a pharmaceutical solid acetaminophen doped with p-Aminophenol. AAPS PharmSciTech. 2000. https://doi.org/10.1208/pt010323.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Araujo AAS, Bezerra MD, Storpirtis S, Matos JD. Determination of the melting temperature, heat of fusion, and purity analysis of different samples of zidovudine (AZT) using DSC. Braz J Pharm Sci. 2010. https://doi.org/10.1590/S1984-82502010000100005.

    Article  Google Scholar 

  113. Kestens V, Roebben G, Linsinger T. Development and validation of a differential scanning calorimetry purity determination method for polycyclic aromatic hydrocarbons. Accreditat Qual Assur. 2010. https://doi.org/10.1007/s00769-010-0632-6.

    Article  Google Scholar 

  114. Tong HHY, Shekunov BY, York P, Chow AH. Thermal analysis of trace levels of polymorphic impurity in salmeterol xinafoate samples. Pharm Res. 2003. https://doi.org/10.1023/a:1025758127358.

    Article  PubMed  Google Scholar 

  115. Tong HHY, Shekunov BY, Chan JP, Mok CKF, Hung HCM, Chow AHL. An improved thermoanalytical approach to quantifying trace levels of polymorphic impurity in drug powders. Int J Pharmaceut. 2005. https://doi.org/10.1016/j.ijpharm.2005.02.024.

    Article  Google Scholar 

  116. Wong SN, Chan SWS, Peng X, Xuan B, Lee HW, Tong HHY, Chow SF. Effects of the glass-forming ability and annealing conditions on cocrystallization behaviors via rapid solvent removal: a case study of voriconazole. Pharmaceutics. 2020. https://doi.org/10.3390/pharmaceutics12121209.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Hou X, Feng Y, Zhang P, Wei H, Dang L. Selective crystal growth of theophylline-saccharin cocrystal on self-assembled monolayer from incongruent system. Cryst Growth Des. 2015. https://doi.org/10.1021/acs.cgd.5b00800.

    Article  Google Scholar 

  118. Aitipamula S, Wong ABH, Chow PS, Tan RBH. Polymorphism and phase transformations of a cocrystal of nicotinamide and pimelic acid. CrystEngComm. 2012. https://doi.org/10.1039/c2ce26151k.

    Article  Google Scholar 

  119. Ferreira PO, de Almeida AC, dos Santos ÉC, Droppa R, Ferreira FF, Kogawa AC, Caires FJ. A norfloxacin-nicotinic acid cocrystal: mechanochemical synthesis, thermal and structural characterization and solubility assays. Thermochim Acta. 2020. https://doi.org/10.1016/j.tca.2020.178782.

    Article  Google Scholar 

  120. Kiselev VD, Shakirova II, Potapova LN, Kashaeva HA, Kornilov DA. Heats of solution of liquid solutes in various solvents. Dataset Pap Chem. 2013. https://doi.org/10.7167/2013/823638.

    Article  Google Scholar 

  121. Smirnov VI, Badelin VG. Enthalpies of l-proline dissolution in aqueous solution of N, N-dimethylformamide at 293.15–308.15K. Thermochim Acta. 2015. https://doi.org/10.1016/j.tca.2015.03.007.

    Article  Google Scholar 

  122. Mohan R, Lorenz H, Myerson AS. Solubility measurement using differential scanning calorimetry. Ind Eng Chem Res. 2002. https://doi.org/10.1021/ie0200353.

    Article  Google Scholar 

  123. Park K, Evans JMB, Myerson AS. Determination of solubility of polymorphs using differential scanning calorimetry. Cryst Growth Des. 2003. https://doi.org/10.1021/cg0340502.

    Article  Google Scholar 

  124. Shen Y, Zong S, Dang L, Wei H. Solubility and thermodynamics of probenecid-4,4′-azopyridine cocrystal in pure and binary solvents. J Mol Liq. 2019. https://doi.org/10.1016/j.molliq.2019.111195.

    Article  Google Scholar 

  125. Good DJ, Rodríguez-Hornedo NR. Cocrystal eutectic constants and prediction of solubility behavior. Cryst Growth Des. 2010. https://doi.org/10.1021/cg901232h.

    Article  Google Scholar 

  126. Nehm SJ, Rodriguez-Spong B, Rodriguez-Hornedo N. Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst Growth Des. 2006. https://doi.org/10.1021/cg0503346.

    Article  Google Scholar 

  127. Habgood M, Deij MA, Mazurek J, Price SL, ter Horst JH. Carbamazepine co-crystallization with pyridine carboxamides: rationalization by complementary phase diagrams and crystal energy landscapes. Cryst Growth Des. 2010. https://doi.org/10.1021/cg901230b.

    Article  Google Scholar 

  128. Jelinski T, Cysewski P. Application of a computational model of natural deep eutectic solvents utilizing the COSMO-RS approach for screening of solvents with high solubility of rutin. J Mol Model. 2018. https://doi.org/10.1007/s00894-018-3700-1.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Klamt A. Prediction of the mutual solubilities of hydrocarbons and water with COSMO-RS. Fluid Phase Equilibr. 2003. https://doi.org/10.1016/s0378-3812(02)00322-9.

    Article  Google Scholar 

  130. Žilnik LF, Jazbinšek A, Hvala A, Vrečer F, Klamt A. Solubility of sodium diclofenac in different solvents. Fluid Phase Equilib. 2007. https://doi.org/10.1016/j.fluid.2007.07.020.

    Article  Google Scholar 

  131. Guo Z, Lue BM, Thomasen K, Meyer AS, Xu X. Predictions of flavonoid solubility in ionic liquids by COSMO-RS: experimental verification, structural elucidation, and solvation characterization. Green Chem. 2007. https://doi.org/10.1039/b709786g.

    Article  Google Scholar 

  132. Loschen C, Klamt A. Solubility prediction, solvate and cocrystal screening as tools for rational crystal engineering. J Pharm Pharmacol. 2015. https://doi.org/10.1111/jphp.12376.

    Article  PubMed  Google Scholar 

  133. Przybyłek M, Ziółkowska D, Mroczyńska K, Cysewski P. Applicability of phenolic acids as effective enhancers of cocrystal solubility of methylxanthines. Cryst Growth Des. 2017. https://doi.org/10.1021/acs.cgd.7b00121.

    Article  Google Scholar 

  134. Renon H, Prausnitz JM. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968. https://doi.org/10.1002/aic.690140124.

    Article  Google Scholar 

  135. Ning L, Gong X, Li P, Chen X, Wang H, Xu J. Measurement and correlation of the solubility of estradiol and estradiol-urea co-crystal in fourteen pure solvents at temperatures from 273.15 K to 318.15 K. J Mol Liq. 2020. https://doi.org/10.1016/j.molliq.2020.112599.

    Article  Google Scholar 

  136. Dabir TO, Gaikar VG, Jayaraman S, Mukherjee S. Thermodynamic modeling studies of aqueous solubility of caffeine, gallic acid and their cocrystal in the temperature range of 303 K–363 K. Fluid Phase Equilibr. 2018. https://doi.org/10.1016/j.fluid.2017.09.021.

    Article  Google Scholar 

  137. Ouyang J, Zhou L, Liu Z, Xiao S, Huang X, Heng JYY. Solubility determination and modelling of benzamide in organic solvents at temperatures from 283.15 K and 323.15 K, and ternary phase diagrams of benzamide-benzoic acid cocrystals in ethanol at 298.15 K. J Mol Liq. 2019. https://doi.org/10.1016/j.molliq.2019.110885.

    Article  Google Scholar 

  138. Bruni G, Monteforte F, Maggi L, Girella A, Berbenni V, Milanese C, Marini A. Probenecid and benzamide: DSC applied to the study of an “impossible” pharmaceutical system. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-09749-x.

    Article  Google Scholar 

  139. Fernandes RP, do Nascimento ALCS, Carvalho ACS, Teixeira JA, Ionashiro M, Caires FJ. Mechanochemical synthesis, characterization, and thermal behavior of meloxicam cocrystals with salicylic acid, fumaric acid, and malic acid. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-019-08118-7.

    Article  Google Scholar 

  140. Ferreira LT, Alarcon RT, Perpétuo GL, Bannach G. Investigation and characterization by TG/DTG–DTA and DSC of the fusion of Riboflavin, and its interaction with the antibiotic norfloxacin in the screening of cocrystal. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7696-7.

    Article  Google Scholar 

  141. Torquetti C, Ferreira PO, de Almeida AC, Fernandes RP, Caires FJ. Thermal study and characterization of new cocrystals of ciprofloxacin with picolinic acid. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-020-10479-3.

    Article  Google Scholar 

  142. O’Mahony C, Gkartzou E, Haq EU, Koutsoumpis S, Silien C, Charitidis CA, Tofail SAM. Determination of thermal and thermomechanical properties of biodegradable PLA blends: for additive manufacturing process. J Therm Anal Calorim. 2021. https://doi.org/10.1007/s10973-020-09859-6.

    Article  Google Scholar 

  143. Xin Y, Sun Q, Jia H, Yuan S, Ge Z, Tang L. Acoustic emission (AE) characteristics of limestone during heating. J Therm Anal Calorim. 2022. https://doi.org/10.1007/s10973-022-11519-w.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 81703438).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Henry H. Y. Tong or Zhengzheng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Tong, H.H.Y. & Zhou, Z. Feasibility of thermal methods on screening, characterization and physicochemical evaluation of pharmaceutical cocrystals. J Therm Anal Calorim 147, 12947–12963 (2022). https://doi.org/10.1007/s10973-022-11762-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11762-1

Keywords

Navigation