Skip to main content
Log in

Thermal study and characterization of new cocrystals of ciprofloxacin with picolinic acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This article describes the mechanochemical synthesis (liquid-assisted grinding (LAG) and neat grinding (NG)), characterization and thermoanalytical study of new cocrystals of ciprofloxacin (CIP) with picolinic acid (PCA) in a 1:1 molar ratio. Characterization was performed through thermoanalytical techniques (differential scanning calorimetry (DSC), simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC)), X-ray powder diffraction (XRPD) and infrared spectroscopy (IR). The thermoanalytical study, together with the XRPD and IR techniques, confirmed the formation of new cocrystal and helped to understand its formation. From the LAG method, using ethanol as a solvent, a cocrystal solvate was obtained. The NG method, together with thermal stress, favored obtaining the cocrystal through a coamorphous intermediate phase. Solubility study of all new materials showed an increase in CIP concentration for the cocrystals compared to pure drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Company TBR. Pharmaceutical Drugs Global Market Report 2018 Including: Musculoskeletal Disorder Drugs; Cardiovascular Drugs; Oncology Drugs; Anti-infective Drugs; Metabolic Disorder Drugs; Central Nervous System Drugs; Genito-urinary Drugs; Gastrointestinal Drugs; He. 2018.

  2. Savla R, Browne J, Plassat V, Wasan KM, Wasan EK. Review and analysis of FDA approved drugs using lipid-based formulations. Drug Dev Ind Pharm. 2017. https://doi.org/10.1080/03639045.2017.1342654.

    Article  PubMed  Google Scholar 

  3. Mantri RV, Sanghvi R, Zhu HJ. Solubility of pharmaceutical solids. Dev Solid Oral Dos Forms Pharm Theory Pract Second Ed. 2017. https://doi.org/10.1016/B978-0-12-802447-8.00001-7.

    Article  Google Scholar 

  4. Karagianni A, Malamatari M, Kachrimanis K. Pharmaceutical cocrystals: new solid phase modification approaches for the formulation of APIs. Pharmaceutics. 2018. https://doi.org/10.3390/pharmaceutics10010018.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fernandes RP, do Nascimento ALCS, Carvalho ACS, Teixeira JA, Ionashiro M, Caires FJ. Mechanochemical synthesis, characterization, and thermal behavior of meloxicam cocrystals with salicylic acid, fumaric acid, and malic acid. J Therm Anal Calorim. 2019; https://doi.org/10.1007/s10973-019-08118-7.

  6. Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical properties. Cryst Growth Des. 2009. https://doi.org/10.1021/cg900129f.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bruni G, Monteforte F, Maggi L, et al. Probenecid and benzamide: cocrystal prepared by a green method and its physico-chemical and pharmaceutical characterization. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09197-2.

    Article  Google Scholar 

  8. Fuliaş A, Vlase G, Vlase T, Şuta LM, Şoica C, Ledeţi I. Screening and characterization of cocrystal formation between carbamazepine and succinic acid. J Therm Anal Calorim. 2015. https://doi.org/10.1007/s10973-015-4473-8.

    Article  Google Scholar 

  9. Martin Santos A, Wong A, Araújo Almeida A, Fatibello-Filho O. Simultaneous determination of paracetamol and ciprofloxacin in biological fluid samples using a glassy carbon electrode modified with graphene oxide and nickel oxide nanoparticles. Talanta. 2017. https://doi.org/10.1016/j.talanta.2017.06.040.

    Article  PubMed  Google Scholar 

  10. de Almeida AC, Torquetti C, Ferreira PO, Fernandes RP, dos Santos EC, Kogawa AC, Caires FJ. Cocrystals of ciprofloxacin with nicotinic and isonicotinic acids: mechanochemical synthesis, characterization, thermal and solubility study. Thermochim Acta. 2020. https://doi.org/10.1016/j.tca.2019.178346.

    Article  Google Scholar 

  11. de Almeida AC, Ferreira PO, Torquetti C, Ekawa B, Carvalho ACS, dos Santos EC, Caires FJ. Mechanochemical synthesis, characterization and thermal study of new cocrystals of ciprofloxacin with pyrazinoic acid and p-aminobenzoic acid. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08958-3.

    Article  Google Scholar 

  12. Tella AC, Oladipo AC, Adeyemi OG, Oluwafemi OS, Oguntoye SO, Alimi LO, Ajayi JT, Degni SK. Solid state synthesis, spectroscopic and X-ray studies of metal complexes of 2-picolinic acid and vapochromic behavior of [Co(Pic)2(H2O)2]·2H2O. Solid State Sci. 2017. https://doi.org/10.1016/j.solidstatesciences.2017.03.017.

    Article  Google Scholar 

  13. Friščić T, Childs SL, Rizvi SAA, Jones W. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm. 2009. https://doi.org/10.1039/B815174A.

    Article  Google Scholar 

  14. Douroumis D, Ross SA, Nokhodchi A. Advanced methodologies for cocrystal synthesis. Adv Drug Deliv Rev. 2017. https://doi.org/10.1016/j.addr.2017.07.008.

    Article  PubMed  Google Scholar 

  15. Do Nascimento ALCS, Teixeira JA, Nunes WDG, Campos FX, Treu-Filho O, Caires FJ, Ionashiro M. Thermal behavior, spectroscopic study and evolved gas analysis (EGA) during pyrolysis of picolinic acid, sodium picolinate and its light trivalent lanthanide complexes in solid state. J Anal Appl Pyrol. 2016. https://doi.org/10.1016/j.jaap.2016.01.010.

    Article  Google Scholar 

  16. D’Angelo A, Edgar B, Hurt AP, Antonijević MD. Physico-chemical characterisation of three-component co-amorphous systems generated by a melt-quench method. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7291-y.

    Article  Google Scholar 

  17. Jayasankar A, Somwangthanaroj A, Shao ZJ, Rodríguez-Hornedo N. Cocrystal formation during cogrinding and storage is mediated by amorphous phase. Pharm Res. 2006. https://doi.org/10.1007/s11095-006-9110-6.

    Article  PubMed  Google Scholar 

  18. Seefeldt K, Miller J, Alvarez-Núñez F, Rodríguez-Hornedo N. Crystallization pathways and kinetics of carbamazepine-nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy and calorimetry studies. J Pharm Sci. 2012. https://doi.org/10.1002/jps.

    Article  Google Scholar 

  19. Ross SA, Lamprou DA, Douroumis D. Engineering and manufacturing of pharmaceutical co-crystals: a review of solvent-free manufacturing technologies. Chem Commun. 2016. https://doi.org/10.1039/C6CC01289B.

    Article  Google Scholar 

  20. Fischer F, Heidrich A, Greiser S, Benemann S, Rademann K, Emmerling F. Polymorphism of mechanochemically synthesized cocrystals: a case study. Cryst Growth Des. 2016. https://doi.org/10.1021/acs.cgd.5b01776.

    Article  Google Scholar 

  21. Sahoo S, Chakraborti CK, Mishra SC, Nanda UN, Naik S. FTIR and XRD investigations of some fluoroquinolones. Int J Pharm Pharm Sci. 2011;.

  22. Polishchuk AV, Karaseva ET, Emelina TB, Cramariuc O, Karasev VE. Polymorphism and intramolecular proton transfer in fluoroquinolone compounds. J Fluoresc. 2011. https://doi.org/10.1007/s10895-011-0912-5.

    Article  PubMed  Google Scholar 

  23. Cerreia Vioglio P, Chierotti MR, Gobetto R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv Drug Deliv Rev. 2017. https://doi.org/10.1016/j.addr.2017.07.001.

    Article  PubMed  Google Scholar 

  24. Huang LF, Tong WQ. Impact of solid state properties on developability assessment of drug candidates. Adv Drug Deliv Rev. 2004. https://doi.org/10.1016/j.addr.2003.10.007.

    Article  PubMed  Google Scholar 

  25. Dengale SJ, Grohganz H, Rades T, Löbmann K. Recent advances in co-amorphous drug formulations. Adv Drug Deliv Rev. 2016. https://doi.org/10.1016/j.addr.2015.12.009.

    Article  PubMed  Google Scholar 

  26. Shi Q, Moinuddin SM, Cai T. Advances in coamorphous drug delivery systems. Acta Pharm Sin B. 2019. https://doi.org/10.1016/j.apsb.2018.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank CPID/CDMF, FAPESP (Grant Nos. 2013/09022-7, 2015/19863-4, 2017/14936-9, 2018/12463-9 and 2018/24378-6), CNPq (Grant Nos. 141829/2017-6, 421469/2016-1, 133104/2019-2) and CAPES (Grant No. 001) foundations (Brazil) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flávio Junior Caires.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torquetti, C., Ferreira, P.O., de Almeida, A.C. et al. Thermal study and characterization of new cocrystals of ciprofloxacin with picolinic acid. J Therm Anal Calorim 147, 1299–1306 (2022). https://doi.org/10.1007/s10973-020-10479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10479-3

Keywords

Navigation