Skip to main content
Log in

Coformer Screening Using Thermal Analysis Based on Binary Phase Diagrams

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The advent of cocrystals has demonstrated a growing need for efficient and comprehensive coformer screening in search of better development forms, including salt forms. Here, we investigated a coformer screening system for salts and cocrystals based on binary phase diagrams using thermal analysis and examined the effectiveness of the method.

Methods

Indomethacin and tenoxicam were used as models of active pharmaceutical ingredients (APIs). Physical mixtures of an API and 42 kinds of coformers were analyzed using Differential Scanning Calorimetry (DSC) and X-ray DSC. We also conducted coformer screening using a conventional slurry method and compared these results with those from the thermal analysis method and previous studies.

Results

Compared with the slurry method, the thermal analysis method was a high-performance screening system, particularly for APIs with low solubility and/or propensity to form solvates. However, this method faced hurdles for screening coformers combined with an API in the presence of kinetic hindrance for salt or cocrystal formation during heating or if there is degradation near the metastable eutectic temperature.

Conclusions

The thermal analysis and slurry methods are considered complementary to each other for coformer screening. Feasibility of the thermal analysis method in drug discovery practice is ensured given its small scale and high throughput.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. Aakeroy CB, Forbes S, Desper J. Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J Am Chem Soc. 2009;131(47):17048–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Remenar JF, Morissette SL, Peterson ML, Moulton B, MacPhee JM, Guzman HR, et al. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J Am Chem Soc. 2003;125(28):8456–7.

    Article  CAS  PubMed  Google Scholar 

  3. Good DJ, Rodriguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des. 2009;9(5):2252–64.

    Article  CAS  Google Scholar 

  4. Trask AV, Motherwell WDS, Jones W. Physical stability enhancement of theophylline via cocrystallization. Int J Pharm. 2006;320(1–2):114–23.

    Article  CAS  PubMed  Google Scholar 

  5. Trask AV, Motherwell WDS, Jones W. Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst Growth Des. 2005;5(3):1013–21.

    Article  CAS  Google Scholar 

  6. Karki S, Friscic T, Fabian L, Laity PR, Day GM, Jones W. Improving mechanical properties of crystalline solids by cocrystal formation: new compressible forms of paracetamol. Adv Mater. 2009;21(38–39):3905–9.

    Article  CAS  Google Scholar 

  7. Sun CC, Hou H. Improving mechanical properties of caffeine and methyl gallate crystals by cocrystallization. Cryst Growth Des. 2008;8(5):1575–9.

    Article  CAS  Google Scholar 

  8. McNamara DP, Childs SL, Giordano J, Iarriccio A, Cassidy J, Shet MS, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res. 2006;23(8):1888–97.

    Article  CAS  PubMed  Google Scholar 

  9. Tahara A, Kurosaki E, Yokono M, Yamajuku D, Kihara R, Hayashizaki Y, et al. Antidiabetic effects of SGLT2-selective inhibitor ipragliflozin in streptozotocin-nicotinamide-induced mildly diabetic mice. J Pharmacol Sci. 2012;120(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  10. Mascitti V, Thuma BA, Smith AC, Robinson RP, Brandt T, Kalgutkar AS, et al. On the importance of synthetic organic chemistry in drug discovery: reflections on the discovery of antidiabetic agent ertugliflozin. MedChemComm. 2013;4(1):101–11.

    Article  CAS  Google Scholar 

  11. Jones W, Motherwell S, Trask AV. Pharmaceutical cocrystals: an emerging approach to physical property enhancement. MRS Bull. 2006;31(11):875–9.

    Article  CAS  Google Scholar 

  12. Stahly GP. Diversity in single- and multiple-component crystals. The search for and prevalence of polymorphs and cocrystals. Cryst Growth Des. 2007;7(6):1007–26.

    Article  CAS  Google Scholar 

  13. Zhang GGZ, Henry RF, Borchardt TB, Lou XC. Efficient co-crystal screening using solution-mediated phase transformation. J Pharm Sci-Us. 2007;96(5):990–5.

    Article  CAS  Google Scholar 

  14. Takata N, Shiraki K, Takano R, Hayashi Y, Terada K. Cocrystal screening of stanolone and mestanolone using slurry crystallization. Cryst Growth Des. 2008;8(8):3032–7.

    Article  CAS  Google Scholar 

  15. Kojima T, Tsutsumi S, Yamamoto K, Ikeda Y, Moriwaki T. High-throughput cocrystal slurry screening by use of in situ Raman microscopy and multi-well plate. Int J Pharm. 2010;399(1–2):52–9.

    Article  CAS  PubMed  Google Scholar 

  16. Friscic T, Childs SL, Rizvi SAA, Jones W. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm. 2009;11(3):418–26.

    Article  CAS  Google Scholar 

  17. Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ. Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs slow evaporation from solution. Cryst Growth Des. 2009;9(2):1106–23.

    Article  CAS  Google Scholar 

  18. Padrela L, Rodrigues MA, Velaga SP, Fernandes AC, Matos HA, de Azevedo EG. Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process. J Supercrit Fluids. 2010;53(1–3):156–64.

    Article  CAS  Google Scholar 

  19. Li ZB, Yang BS, Jiang M, Eriksson M, Spinelli E, Yee N, et al. A practical solid form screen approach to identify a pharmaceutical glutaric acid cocrystal for development. Org Process Res Dev. 2009;13(6):1307–14.

    Article  CAS  Google Scholar 

  20. Karki S, Friscic T, Jones W, Motherwell WDS. Screening for pharmaceutical cocrystal hydrates via neat and liquid-assisted grinding. Mol Pharm. 2007;4(3):347–54.

    Article  CAS  PubMed  Google Scholar 

  21. Bysouth SR, Bis JA, Igo D. Cocrystallization via planetary milling: enhancing throughput of solid-state screening methods. Int J Pharm. 2011;411(1–2):169–71.

    Article  CAS  PubMed  Google Scholar 

  22. Patel JR, Carlton RA, Needham TE, Chichester CO, Vogt FG. Preparation, structural analysis, and properties of tenoxicam cocrystals. Int J Pharm. 2012;436(1–2):685–706.

    Article  CAS  PubMed  Google Scholar 

  23. Berry DJ, Seaton CC, Clegg W, Harrington RW, Coles SJ, Horton PN, et al. Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst Growth Des. 2008;8(5):1697–712.

    Article  CAS  Google Scholar 

  24. Yamashita H, Hirakura Y, Yuda M, Teramura T, Terada K. Detection of cocrystal formation based on binary phase diagrams using thermal analysis. Pharm Res. 2013;30(1):70–80.

    Article  CAS  PubMed  Google Scholar 

  25. Cooke CL, Davey RJ, Black S, Muryn C, Pritchard RG. Binary and ternary phase diagrams as routes to salt discovery ephedrine and pimelic acid. Cryst Growth Des. 2010;10(12):5270–8.

    Article  CAS  Google Scholar 

  26. Alleso M, Velaga S, Alhalaweh A, Cornett C, Rasmussen MA, van den Berg F, et al. Near-infrared spectroscopy for cocrystal screening. A comparative study with Raman spectroscopy. Anal Chem. 2008;80(20):7755–64.

    Article  CAS  PubMed  Google Scholar 

  27. Basavoju S, Bostrom D, Velaga SP. Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm Res. 2008;25(3):530–41.

    Article  CAS  PubMed  Google Scholar 

  28. Umeda Y, Fukami T, Furuishi T, Suzuki T, Tanjoh K, Tomono K. Characterization of multicomponent crystal formed between indomethacin and lidocaine. Drug Dev Ind Pharm. 2009;35(7):843–51.

    Article  CAS  PubMed  Google Scholar 

  29. Cantera RG, Leza MG, Bachiller CM. Solid phases of tenoxicam. J Pharm Sci-Us. 2002;91(10):2240–51.

    Article  CAS  Google Scholar 

  30. Wouters J. Pharmaceutical salts and co-crystals. Cambridge: The Royal Society of Chemistry; 2012.

    Google Scholar 

  31. Database of Select Committee on GRAS Substances (SCOGS) Reviews. Available from: http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/SCOGS/ucm084104.htm.

  32. Stahl PH, Wermuth, Camille G. Handbook of pharmaceutical salts. 2nd ed. Weinheim: WILEY-VCH Verlag GmbH; 2011.

    Google Scholar 

  33. Nygren CL, Wilson CC, Turner JFC. Electron and nuclear positions in the short hydrogen bond in urotropine-N-oxide-formic acid. J Phys Chem A. 2005;109(9):1911–9.

    Article  CAS  PubMed  Google Scholar 

  34. Aakeroy CB, Fasulo ME, Desper J. Cocrystal or salt: does it really matter? Mol Pharm. 2007;4(3):317–22.

    Article  PubMed  Google Scholar 

  35. Lu E, Rodriguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. Crystengcomm. 2008;10(6):665–8.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank Mayuko Mirun for assisting with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Yamashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, H., Hirakura, Y., Yuda, M. et al. Coformer Screening Using Thermal Analysis Based on Binary Phase Diagrams. Pharm Res 31, 1946–1957 (2014). https://doi.org/10.1007/s11095-014-1296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1296-4

KEY WORDS

Navigation