Skip to main content
Log in

Detection of Cocrystal Formation Based on Binary Phase Diagrams Using Thermal Analysis

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Although a number of studies have reported that cocrystals can form by heating a physical mixture of two components, details surrounding heat-induced cocrystal formation remain unclear. Here, we attempted to clarify the thermal behavior of a physical mixture and cocrystal formation in reference to a binary phase diagram.

Methods

Physical mixtures prepared using an agate mortar were heated at rates of 2, 5, 10, and 30°C/min using differential scanning calorimetry (DSC). Some mixtures were further analyzed using X-ray DSC and polarization microscopy.

Results

When a physical mixture consisting of two components which was capable of cocrystal formation was heated using DSC, an exothermic peak associated with cocrystal formation was detected immediately after an endothermic peak. In some combinations, several endothermic peaks were detected and associated with metastable eutectic melting, eutectic melting, and cocrystal melting. In contrast, when a physical mixture of two components which is incapable of cocrystal formation was heated using DSC, only a single endothermic peak associated with eutectic melting was detected.

Conclusion

These experimental observations demonstrated how the thermal events were attributed to phase transitions occurring in a binary mixture and clarified the relationship between exothermic peaks and cocrystal formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

REFERENCES

  1. Jones W, Motherwell S, Trask AV. Pharmaceutical cocrystals: an emerging approach to physical property enhancement. MRS Bull. 2006;31(11):875–9.

    Article  CAS  Google Scholar 

  2. Bhogala BR, Nangia A. Ternary and quaternary co-crystals of 1,3-cis,5-cis-cyclohexanetricarboxylic acid and 4,4′-bipyridines. New J Chem. 2008;32(5):800–7.

    Article  CAS  Google Scholar 

  3. Stahly GP. Diversity in single- and multiple-component crystals. The search for and prevalence of polymorphs and cocrystals. Cryst Growth Des. 2007;7(6):1007–26.

    Article  CAS  Google Scholar 

  4. Aakeroy CB, Forbes S, Desper J. Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug. J Am Chem Soc. 2009;131(47):17048–9.

    Article  PubMed  CAS  Google Scholar 

  5. Remenar JF, Morissette SL, Peterson ML, Moulton B, MacPhee JM, Guzman HR, et al. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J Am Chem Soc. 2003;125(28):8456–7.

    Article  PubMed  CAS  Google Scholar 

  6. Good DJ, Rodriguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des. 2009;9(5):2252–64.

    Article  CAS  Google Scholar 

  7. Trask AV, Motherwell WDS, Jones W. Physical stability enhancement of theophylline via cocrystallization. Int J Pharm. 2006;320(1–2):114–23.

    Article  PubMed  CAS  Google Scholar 

  8. Trask AV, Motherwell WDS, Jones W. Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst Growth Des. 2005;5(3):101–21.

    Article  Google Scholar 

  9. Karki S, Friscic T, Fabian L, Laity PR, Day GM, Jones W. Improving mechanical properties of crystalline solids by cocrystal formation: new compressible forms of paracetamol. Adv Mater. 2009;21:3905–9.

    Article  CAS  Google Scholar 

  10. Sun CC, Hou H. Improving mechanical properties of caffeine and methyl gallate crystals by cocrystallization. Cryst Growth Des. 2008;8(5):1575–9.

    Article  CAS  Google Scholar 

  11. McNamara DP, Childs SL, Giordano J, Iarriccio A, Cassidy J, Shet MS, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res. 2006;23(8):1888–97.

    Article  PubMed  CAS  Google Scholar 

  12. Hickey MB, Peterson ML, Scoppettuolo LA, Morrisette SL, Vetter A, Guzman H, et al. Performance comparison of a co-crystal of carbamazepine with marketed product. Eur J Pharm Biopharm. 2007;67(1):112–9.

    Article  PubMed  CAS  Google Scholar 

  13. Chadwick K, Davey RJ, Dent G, Pritchard RG, Hunter CA, Musumeci D. Cocrystallization: a solution chemistry perspective and the case of benzophenone and diphenylamine. Cryst Growth Des. 2009;9(4):1990–9.

    Article  CAS  Google Scholar 

  14. Jayasankar A, Reddy LS, Bethune SJ, Rodriguez-Hornedo N. Role of cocrystal and solution chemistry on the formation and stability of cocrystals with different stoichiometry. Cryst Growth Des. 2009;9(2):889–97.

    Article  CAS  Google Scholar 

  15. Takata N, Shiraki K, Takano R, Hayashi Y, Terada K. Cocrystal screening of stanolone and mestanolone using slurry crystallization. Cryst Growth Des. 2008;8(8):3032–7.

    Article  CAS  Google Scholar 

  16. Zhang GGZ, Henry RF, Borchardt TB, Lou XC. Efficient co-crystal screening using solution-mediated phase transformation. J Pharm Sci-Us. 2007;96(5):990–5.

    Article  CAS  Google Scholar 

  17. Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ. Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs slow evaporation from solution. Cryst Growth Des. 2009;9(2):1106–23.

    Article  CAS  Google Scholar 

  18. Basavoju S, Bostrom D, Velaga SP. Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm Res. 2008;25(3):530–41.

    Article  PubMed  CAS  Google Scholar 

  19. Trask AV, van de Streek J, Motherwell WDS, Jones W. Achieving polymorphic and stoichiometric diversity in cocrystal formation: importance of solid-state grinding, powder X-ray structure determination, and seeding. Cryst Growth Des. 2005;5(6):2233–41.

    Article  CAS  Google Scholar 

  20. Shan N, Toda F, Jones W. Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. Chem Commun. 2002;20:2372–3.

    Article  Google Scholar 

  21. Trask AV, Jones W. Crystal engineering of organic cocrystals by the solid-state grinding approach. Org Solid State React. 2005;254:41–70.

    CAS  Google Scholar 

  22. Aher S, Dhumal R, Mahadik K, Paradkar A, York P. Ultrasound assisted cocrystallization from solution (USSC) containing a non-congruently soluble cocrystal component pair: caffeine/maleic acid. Eur J Pharm Sci. 2010;41(5):597–602.

    Article  PubMed  CAS  Google Scholar 

  23. Chadwick K, Davey R, Cross W. How does grinding produce co-crystals? Insights from the case of benzophenone and diphenylamine. CrystEngComm. 2007;9(9):732–4.

    Article  CAS  Google Scholar 

  24. Berry DJ, Seaton CC, Clegg W, Harrington RW, Coles SJ, Horton PN, et al. Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst Growth Des. 2008;8(5):1697–712.

    Article  CAS  Google Scholar 

  25. Dhumal RS, Kelly AL, York P, Coates PD, Paradkar A. Cocrystalization and simultaneous agglomeration using hot melt extrusion. Pharm Res. 2010;27(12):2725–33.

    Article  PubMed  CAS  Google Scholar 

  26. Castellan GW. Physical chemistry. 3rd ed. San Francisco: Benjamin Cummings Pub. Co.; 1983.

    Google Scholar 

  27. Singh NB, Das SS, Gupta P, Dwivedi MK. Phase equillibria and solidification behaviour in the vanillin-p-anisidine system. J Cryst Growth. 2008;311(1):118–22.

    Article  CAS  Google Scholar 

  28. Dwivedi Y, Kant S, Rai SB, Rai RN. Synthesis, physicochemical and optical characterization of novel fluorescing complex: o-phenylenediamine-benzoin. J Fluoresc. 2011;21(3):1255–63.

    Article  PubMed  CAS  Google Scholar 

  29. Rai US, George S. Thermochemical studies on the eutectics and addition-compounds in the binary-systems of benzidine with P-nitrophenol, M-aminophenol and resorcinol. Thermochim Acta. 1994;243(1):17–25.

    Article  CAS  Google Scholar 

  30. Crowley KJ, Forbes RT, York P, Nyqvist H, Camber O. Oleate salt formation and mesomorphic behavior in the propranolol oleic acid binary system. J Pharm Sci-Us. 1999;88(6):586–91.

    Article  CAS  Google Scholar 

  31. Winfield AJ, Saidan SHA. Compound formation in phenobarbitone-urea systems. Int J Pharm. 1981;8:211–6.

    Article  CAS  Google Scholar 

  32. Grant DW, Jacobson H, Fairbrother JE, Patel CG. Phases, in the paracetamol-phenazone system. Int J Pharm. 1980;5:109–16.

    Article  CAS  Google Scholar 

  33. Lu E, Rodriguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. Cryst Eng Comm. 2008;10(6):665–8.

    CAS  Google Scholar 

  34. Sangster J. Phase diagrams and thermodynamic properties of binary systems of drugs. J Phys Chem Ref Data. 1999;28(4):889–930.

    Article  CAS  Google Scholar 

  35. Bhatt PM, Ravindra NV, Banerjee R, Desiraju GR. Saccharin as a salt former. Enhanced solubilities of saccharinates of active pharmaceutical ingredients. Chem Commun. 2005;28(8):1073–5.

    Article  Google Scholar 

  36. Childs SL, Rodriguez-Hornedo N, Reddy LS, Jayasankar A, Maheshwari C, McCausland L, et al. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. Cryst Eng Comm. 2008;10(7):856–64.

    CAS  Google Scholar 

  37. Fleischman SG, Kuduva SS, McMahon JA, Moulton B, Walsh RDB, Rodriguez-Hornedo N, et al. Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine. Cryst Growth Des. 2003;3(6):909–19.

    Article  CAS  Google Scholar 

  38. Jayasankar A, Somwangthanaroj A, Shao ZJ, Rodriguez-Hornedo N. Cocrystal formation during cogrinding and storage is mediated by amorphous phase. Pharm Res. 2006;23(10):2381–92.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank Toshikazu Adachi for supporting our experiments and Mayuko Mirun for assisting in conducting the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Yamashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, H., Hirakura, Y., Yuda, M. et al. Detection of Cocrystal Formation Based on Binary Phase Diagrams Using Thermal Analysis. Pharm Res 30, 70–80 (2013). https://doi.org/10.1007/s11095-012-0850-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0850-1

KEY WORDS

Navigation