Skip to main content
Log in

Improving the Chemical Stability of Amorphous Solid Dispersion with Cocrystal Technique by Hot Melt Extrusion

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To explore in-situ forming cocrystal as a single-step, efficient method to significantly depress the processing temperature and thus minimize the thermal degradation of heat-sensitive drug in preparation of solid dispersions by melting method (MM) and hot melt extrusion (HME).

Methods

Carbamazepine (CBZ)-nicotinamide (NIC) cocrystal solid dispersions were prepared with polymer carriers PVP/VA, SOLUPLUS and HPMC by MM and/or HME. The formation of cocrystal was investigated by differential scanning calorimetry and hot stage polarized optical microscopy. State of CBZ in solid dispersion was characterized by X-ray powder diffraction and optical microscopy. Interactions between CBZ, NIC and polymers were investigated by FTIR. Dissolution behaviors of solid dispersions were compared with that of pure CBZ.

Results

CBZ-NIC cocrystal with melting point of 160°C was formed in polymer carriers during heating process, and the preparation temperature of amorphous CBZ solid dispersion was therefore depressed to 160°C. The dissolution rate of CBZ-NIC cocrystal solid dispersion was significantly increased.

Conclusions

By in-situ forming cocrystal, chemically stable amorphous solid dispersions were prepared by MM and HME at a depressed processing temperature. This method provides an attractive opportunity for HME of heat-sensitive drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CBZ:

carbamazepine

DSC:

differential scanning calorimetry

FTIR:

fourier transform infrared spectroscopy

HME:

hot melt extrusion

HPLC:

high performance liquid chromatography

HSPM:

hot stage polarized optical microscopy

MM:

melting method

NIC:

nicotinamide

T g :

glass transition temperature

T m :

melting point

TGA:

thermal gravimetric analysis

XRPD:

X-ray powder diffraction

REFERENCES

  1. Vasconcelos T, Sarmento B, Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today. 2007;12(23–34):1068–75.

    Article  PubMed  CAS  Google Scholar 

  2. Chokshi RJ, Zia H, Sandhu HK, Shah NH, Malick WA. Improving the dissolution rate of poorly water soluble drug by solid dispersion and solid solution: pros and cons. Drug Deliv. 2007;14(1):33–45.

    Article  PubMed  CAS  Google Scholar 

  3. Lalkshman JP, Cao Y, Kowalski J, Serajuddin ATM. Application of melt extrusion in the development of a physically and chemically stable high-energy amorphous solid dispersion of a poorly water-soluble drug. Mol Pharm. 2008;5(6):994–1002.

    Article  Google Scholar 

  4. Liu HJ, Wang P, Zhang XY, Shen F, Gogos CG. Effects of extrusion process parameters on the dissolution behavior of indomethacin in Eudragit (R) E PO solid dispersions. Int J Pharm. 2010;383(1–2):161–9.

    Article  PubMed  CAS  Google Scholar 

  5. Repka MA, Battu SK, Upadhye SB, Thumma S, Crowley MM, Zhang F, et al. Pharmaceutical applications of hot-melt extrusion: Part II. Drug Dev Ind Pharm. 2007;33(10):1043–57.

    Article  PubMed  CAS  Google Scholar 

  6. Crowley MM, Zhang F, Repka MA, Thumma S, Upadhye SB, Battu SK, et al. Pharmaceutical applications of hot-melt extrusion: Part I. Drug Dev Ind Pharm. 2007;33(9):909–26.

    Article  PubMed  CAS  Google Scholar 

  7. Munjal M, Stodghill SP, Elsohly MA, Repka MA. Polymeric systems for amorphous Delta(9)-tetrahydrocannabinol produced by a hot-melt method. Part 1: chemical and thermal stability during processing. J Pharm Sci. 2006;95(8):1841–53.

    Article  PubMed  CAS  Google Scholar 

  8. Verreck G, Decorte A, Heymans K, Adriaensen J, Liu D, Tomasko D, et al. Hot stage extrusion of p-amino salicylic acid with EC using CO2 as a temporary plasticizer. Int J Pharm. 2006;327(1–2):45–50.

    Article  PubMed  CAS  Google Scholar 

  9. Wu CB, McGinity JW. Influence of methylparaben as a solid-state plasticizer on the physicochemical properties of Eudragit (R) RS PO hot-melt extrudates. Eur J Pharm Biopharm. 2003;56(1):95–100.

    Article  PubMed  CAS  Google Scholar 

  10. Ghebremeskel AN, Vernavarapu C, Lodaya M. Use of surfactants as plasticizers in preparing solid dispersions of poorly soluble DRUG: Selection of polymer-surfactant combinations using solubility parameters and testing the processability. Int J Pharm. 2007;328(2):119–29.

    Article  PubMed  CAS  Google Scholar 

  11. Schultheiss N, Newman A. Pharmaceutical cocrystals and their physicochemical Properties. Cryst Growth Des. 2009;9(6):2950–67.

    Article  PubMed  CAS  Google Scholar 

  12. Lu E, Rodriguez-Hornedo N, Suryanarayanan R. A rdrugd thermal method for cocrystal screening. Cryst Eng Comm. 2008;10(6):665–8.

    CAS  Google Scholar 

  13. Seefeldt K, Miller J, Alvarez-Nunez F, Rodríguez-Hornedo N. Crystallization pathways and kinetics of carbamazepine-nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy, and calorimetry studies. J Pharm Sci. 2007;96(5):1147–58.

    Article  PubMed  CAS  Google Scholar 

  14. Dhumal RS, Kelly AL, York P, Coates PD, Paradkar A. Cocrystalization and simultaneous agglomeration using hot melt extrusion. Pharm Res. 2010;27(12):2725–33.

    Article  PubMed  CAS  Google Scholar 

  15. Childs SL, Wood PA, Rodríguez-Hornedo N, Reddy LS, Hardcastle KI. Analysis of 50 crystal structures containing carbamazepine using the materials module of mercury CSD. Cryst Growth Des. 2009;9(4):1869–88.

    Article  CAS  Google Scholar 

  16. Good DJ, Rodríguez-Hornedo N. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des. 2009;9(5):2252–64.

    Article  CAS  Google Scholar 

  17. Griesser U, Szelagiewicz M, Hofmeier U, Pitt C, Cianferani S. Vapor pressure and heat of sublimation of crystal polymorphs. J Therm Anal Calorim. 1999;57(1):45–60.

    Article  CAS  Google Scholar 

  18. Krahnand FU, Mielck JB. Effect of type and extent of crystalline order on chemical and physical stability of carbamazepine. Int J Pharm. 1989;53(1):25–34.

    Article  Google Scholar 

  19. DiNunzio JC, Brough C, Hughey JR, Miller DA, Williams RO, McGinity JW. Fusion production of solid dispersions containing a heat-sensitive active ingredient by hot melt extrusion and Kinetisol (R) dispersing. Eur J Pharm Biopharm. 2010;74(2):340–51.

    Article  PubMed  CAS  Google Scholar 

  20. Moreschi ECP, Matos JR, Almeida-Muradian LB. Thermal analysis of vitamin PP Niacin and niacinamide. J Therm Anal Calorim. 2009;98(1):161–4.

    Article  CAS  Google Scholar 

  21. Grzesiak AL, Lang M, Kim K, Matzger AJ. Comparison of the four anhydrous polymorphs of carbamazepine and the crystal structure of form I. J Pharm Sci. 2003;92(11):2260–71.

    Article  PubMed  CAS  Google Scholar 

  22. Fleischman SG, Kuduva SS, McMahon JA, Moulton B, Bailey Walsh RD, Rodríguez-Hornedo N, et al. Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine. Cryst Growth Des. 2003;3(6):909–19.

    Article  CAS  Google Scholar 

  23. Katzhendler I, Azoury R, Friedman M. Crystalline properties of carbamazepine in sustained release hydrophilic matrix tablets based on hydroxypropyl methylcellulose. J Control Release. 1998;54(1):69–85.

    Article  PubMed  CAS  Google Scholar 

  24. Rustichelli C, Gamberini G, Ferioli V, Gamberini MC, Ficarra R, Tommasini S. Solid-state study of polymorphic drugs: carbamazepine. J Pharmaceut Biomed. 2000;23(1):41–54.

    Article  CAS  Google Scholar 

  25. Harris RK, Ghi PY, Puschmann H, Apperley DC, Griesser UJ, Hammond RB, et al. Structural studies of the polymorphs of carbamazepine, its dihydrate, and two solvates. Org Process Res Dev. 2005;9(6):902–10.

    Article  CAS  Google Scholar 

  26. Chieng N, Hubert M, Saville D, Rades T, Aaltonen J. Formation kinetics and stability of carbamazepine-nicotinamide cocrystals prepared by mechanical activation. Cryst Growth Des. 2009;9(5):2377–86.

    Article  CAS  Google Scholar 

  27. Rodríguez-Hornedo N, Nehm SJ, Seefeldt KF, Pagán-Torres Y, Falkiewicz CJ. Reaction crystallization of pharmaceutical molecular complexes. Mol Pharm. 2006;3(3):362–7.

    Article  PubMed  Google Scholar 

  28. Bogdanova S, Sidzhakova D, Karaivanova V, Georgieva S. Aspects of the interactions between indomethacin and nicotinamide in solid dispersions. Int J Pharm. 1998;163(1–2):1–10.

    Article  CAS  Google Scholar 

  29. Oberoi LM, Alexander KS, Riga AT. Study of interaction between ibuprofen and nicotinamide using differential scanning calorimetry, spectroscopy, and microscopy and formulation of a fast-acting and possibly better ibuprofen suspension for osteoarthritis patients. J Pharm Sci. 2005;94(1):93–101.

    Article  PubMed  CAS  Google Scholar 

  30. Shikhar A, Bommana MM, Gupta SS, Squillante E. Formulation development of Carbamazepine-Nicotinamide co-crystals complexed with γ-cyclodextrin using supercritical fluid process. J Supercrit Fluids. 2011;55(3):1070–8.

    Article  CAS  Google Scholar 

  31. Hardung H, Djuric D, Ali S. Combining HME & solubilization: Soluplus® -  The solid solution. Drug Delivery Tech. 2010;10(3):20–7.

    CAS  Google Scholar 

  32. Matsumoto T, Zografi G. Physical Properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm Res. 1999;16(11):1722–8.

    Article  PubMed  CAS  Google Scholar 

  33. McPhillips H, Craig DQM, Royall PG, Hill VL. Characterisation of the glass transition of HPMC using modulated temperature differential scanning calorimetry. Int J Pharm. 1999;180(1):83–90.

    Article  PubMed  CAS  Google Scholar 

  34. Greenhalgh DJ, Williams AC, Timmins PT, York P. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci. 1999;88(11):1182–90.

    Article  PubMed  CAS  Google Scholar 

  35. Broman E, Khoo C, Taylor LS. A comparison of alternative polymer excipients and processing methods for making solid dispersions of a poorly water soluble drug. Int J Pharm. 2001;222(1):139–51.

    Article  PubMed  CAS  Google Scholar 

  36. Bartsch SE, Griesser UJ. Physicochemical properties of the binary system glibenclamide and polyethylene glycol 4000. J Therm Anal Calorim. 2004;77(2):555–69.

    Article  CAS  Google Scholar 

  37. Marsac PJ, Shamblin SL, Taylor LS. Theoretical and practical approaches for prediction of drug-polymer miscibility and solubility. Pharm Res. 2006;23(10):2417–26.

    Article  PubMed  CAS  Google Scholar 

  38. Marsac PJ, Li TL, Taylor LS. Estimation of drug–polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res. 2009;26(1):139–51.

    Article  PubMed  CAS  Google Scholar 

  39. Hino T, Ford JL. Characterization of the hydroxypropylmethylcellulose—nicotinamide binary system. Int J Pharm. 2001;219(1–2):39–49.

    Article  PubMed  CAS  Google Scholar 

  40. Djuric D, Boyko V, Karl M and Kolter K. Characterization of polymeric micelles from solid solutions with a polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer and itraconazole. CRS 2011 38th Annual Meeting & Exposition of the Gontrolled Release Society, July 30–August 3, 2011, National Harbor, Maryland, USA.

  41. Chen AX, Zito W, Nash RA. Solubility enhancement of nucleosides and structurally related compounds by complex formation. Pharm Res. 1994;11(3):398–401.

    Article  PubMed  CAS  Google Scholar 

  42. Hussain MA, Diluccio RC, Maurin MB. Complexation of moricizine with nicotinamide and evaluation of the complexation constants by various methods. J Pharm Sci. 1993;82(1):77–9.

    Article  PubMed  CAS  Google Scholar 

  43. Suzuki H, Sunada H. Mechanistic studies on hydrotropic solubilization of nifedipine in nicotinamide solution. Chem Pharm Bull. 1998;46(1):125–30.

    Article  PubMed  CAS  Google Scholar 

  44. Beroi LM, Alexander KS, Riga AT. Study of interaction between ibuprofen and nicotinamide, using differential scanning calorimetry, spectroscopy, and microscopy and formulation of a fast-acting and possibly better ibuprofen suspension for osteoarthritis patients. J Pharm Sci. 2005;94(1):93–101.

    Article  Google Scholar 

  45. Sanghvi R, Evans D, Yalkowsky SH. Stacking complexation by nicotinamide: a useful way of enhancing drug solubility. Int J Pharm. 2007;336(1):35–41.

    Article  PubMed  CAS  Google Scholar 

  46. Coffman RE, Kildsig DO. Effect of nicotinamide and urea on the solubility of riboflavin in various solvents. J Pharm Sic. 1996;85(9):951–4.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS & DISCLOSURES

This work was supported by Guangdong Research Center for Drug Delivery Systems (No. GCZX-A0801). We are grateful to Mrs. Aiping Huang for the help of HSPM experiment. We are also acknowledging Thermo Fisher Scientific (China) Co., Ltd. for the help of HME experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Lu or Chuanbin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Lu, M., Guo, Z. et al. Improving the Chemical Stability of Amorphous Solid Dispersion with Cocrystal Technique by Hot Melt Extrusion. Pharm Res 29, 806–817 (2012). https://doi.org/10.1007/s11095-011-0605-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0605-4

KEY WORDS

Navigation