Skip to main content
Log in

Synthesis and characterization of 2,5-furandicarboxylic acid poly(butanediol sebacate-butanediol) terephthalate (PBSeT) segment copolyesters with excellent water vapor barrier and good mechanical properties

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to improve the performance of biodegradable materials, aliphatic–aromatic copolyesters were synthesized from sebacic acid, terephthalic acid, 1,4-butanediol and 2,5-furandicarboxylic acid via two-step esterification and polycondensation. Copolyesters were characterized by intrinsic viscosity, gel permeation chromatography, X-ray diffraction, Fourier infrared spectroscopy, nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis, lipase biodegradation, tensile and cup method testing. All the copolyesters had a weight-averaged molecular weight over 61,000 g/mol or intrinsic viscosity over 1.1 dL/g when the 2,5-furandicarboxylic acid content was in the range from 2 to 10% of terephthalic acid content. Particularly, the tensile strength, yield strength, elongation at break, molecular weight and water vapor barrier of copolyesters were improved to different extents. Obviously, the addition of 2,5-furandicarboxylic acid did not significantly affect the glass transition temperature and thermal stability of polyesters. When the addition amount of 2,5-furandicarboxylic acid was 10%, the water vapor barrier of copolyester reached the highest, which was increased by 89% compared with PBAT. On the whole, the copolyesters with the addition of 6% of 2,5-furandicarboxylic acid had the best comprehensive performance, which was conducive to promoting the application of biodegradable agricultural mulching and food packaging film.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ahmadi SAR, Kalaee MR, Moradi O, Nosratinia F, Abdouss M (2021) Core–shell activated carbon-ZIF-8 nanomaterials for the removal of tetracycline from polluted aqueous solution. Adv Compos Hybrid Mater 4:1384–1397. https://doi.org/10.1007/s42114-021-00357-3

    Article  CAS  Google Scholar 

  2. Chai J, Hu Q, Qiu B (2021) Conductive polyaniline improves Cr(VI) bio-reduction by anaerobic granular sludge. Adv Compos Hybrid Mater 4:1137–1145. https://doi.org/10.1007/s42114-021-00342-w

    Article  CAS  Google Scholar 

  3. Deng Z, Deng Q, Wang L et al (2021) Modifying coconut shell activated carbon for improved purification of benzene from volatile organic waste gas. Adv Compos Hybrid Mater 4:751–760. https://doi.org/10.1007/s42114-021-00273-6

    Article  CAS  Google Scholar 

  4. Jain B, Hashmi A, Sanwaria S, Singh AK, Susan MABH, Singh A (2020) Zinc oxide nanoparticle incorporated on graphene oxide: an efficient and stable photocatalyst for water treatment through the Fenton process. Adv Compos Hybrid Mater 3:231–242. https://doi.org/10.1007/s42114-020-00153-5

    Article  CAS  Google Scholar 

  5. Liang J, Li X, Zuo J, Lin J, Liu Z (2021) Hybrid 0D/2D heterostructures: in-situ growth of 0D g-C3N4 on 2D BiOI for efficient photocatalyst. Adv Compos Hybrid Mater 4:1122–1136. https://doi.org/10.1007/s42114-021-00341-x

    Article  CAS  Google Scholar 

  6. Shao Y, Bai H, Wang H, Fei G, Li L, Zhu Y (2022) Magnetically sensitive and high template affinity surface imprinted polymer prepared using porous TiO2-coated magnetite-silica nanoparticles for efficient removal of tetrabromobisphenol A from polluted water. Adv Compos Hybrid Mater. 5:130–143. https://doi.org/10.1007/s42114-021-00361-7

    Article  CAS  Google Scholar 

  7. Si Y, Li J, Cui B et al (2022) Janus phenol–formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Adv Compos Hybrid Mater in press: https://doi.org/10.1007/s42114-42022-00446-x.10.1007/s42114-022-00446-x

    Article  Google Scholar 

  8. Wang Y, Xie W, Liu H, Gu H (2020) Hyperelastic magnetic reduced graphene oxide three-dimensional framework with superb oil and organic solvent adsorption capability. Adv Compos Hybrid Mater 3:473–484. https://doi.org/10.1007/s42114-020-00191-z

    Article  CAS  Google Scholar 

  9. Yin C, Wang C, Hu Q (2021) Selective removal of As(V) from wastewater with high efficiency by glycine-modified Fe/Zn-layered double hydroxides. Adv Compos Hybrid Mater 4:360–370. https://doi.org/10.1007/s42114-021-00214-3

    Article  CAS  Google Scholar 

  10. Zhao Y, Liu F, Zhu K, Maganti S, Zhao Z, Bai P (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00430-5

    Article  Google Scholar 

  11. Dong X, Zhao X, Chen Y, Wang C (2021) Investigations about the influence of different carbon matrixes on the electrochemical performance of Na3V2(PO4)3 cathode material for sodium ion batteries. Adv Compos Hybrid Mater 4:1070–1081. https://doi.org/10.1007/s42114-021-00319-9

    Article  CAS  Google Scholar 

  12. Huang J, Chen Q, Chen S et al (2021) Al3+-doped FeNb11O29 anode materials with enhanced lithium-storage performance. Adv Compos Hybrid Mater 4:733–742. https://doi.org/10.1007/s42114-021-00291-4

    Article  CAS  Google Scholar 

  13. Liu L, Guo Z, Yang J, Wang S, He Z, Wang C (2021) High ion selectivity Aquivion-based hybrid membranes for all vanadium redox flow battery. Adv Compos Hybrid Mater 4:451–458. https://doi.org/10.1007/s42114-021-00261-w

    Article  CAS  Google Scholar 

  14. Long Z, Yuan L, Shi C, Wu C, Qiao H, Wang K (2021) Porous Fe2O3 nanorod-decorated hollow carbon nanofibers for high-rate lithium storage. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00397-9

    Article  Google Scholar 

  15. Xie Y, Yang Y, Liu Y et al (2021) Paraffin/polyethylene/graphite composite phase change materials with enhanced thermal conductivity and leakage-proof. Adv Compos Hybrid Mater 4:543–551. https://doi.org/10.1007/s42114-021-00249-6

    Article  CAS  Google Scholar 

  16. Atta OM, Manan S, Ul-Islam M, Ahmed AAQ, Ullah MW, Yang G (2022) Development and characterization of plant oil-incorporated carboxymethyl cellulose/bacterial cellulose/glycerol-based antimicrobial edible films for food packaging applications. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00408-9

    Article  Google Scholar 

  17. Fatima A, Yasir S, Ul-Islam M et al (2021) Ex situ development and characterization of green antibacterial bacterial cellulose-based composites for potential biomedical applications. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00369-z

    Article  Google Scholar 

  18. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv. https://doi.org/10.1126/sciadv.1700782

    Article  Google Scholar 

  19. Huang JH, Cheng XQ, Wu YD et al (2021) Critical operation factors and proposed testing protocol of nanofiltration membranes for developing advanced membrane materials. Adv Compos Hybrid Mater 4:1092–1101. https://doi.org/10.1007/s42114-021-00334-w

    Article  Google Scholar 

  20. Jing X, Li Y, Zhu J et al (2022) Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00438-x

    Article  Google Scholar 

  21. Kuang T, Ju J, Liu T et al (2022) A facile structural manipulation strategy to prepare ultra-strong, super-tough, and thermally stable polylactide/nucleating agent composites. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00390-2

    Article  Google Scholar 

  22. LaChance AM, Hou Z, Farooqui MM et al (2022) Polyolefin films with outstanding barrier properties based on one-step coassembled nanocoatings. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00421-6

    Article  Google Scholar 

  23. Luo W, Wei Y, Zhuang Z et al (2022) Fabrication of Ti3C2Tx MXene/polyaniline composite films with adjustable thickness for high-performance flexible all-solid-state symmetric supercapacitors. Electrochim Acta 406:139871. https://doi.org/10.1016/j.electacta.2022.139871

    Article  CAS  Google Scholar 

  24. Tu J, Li H, Zhang J et al (2019) Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites. Adv Compos Hybrid Mater 2:471–480. https://doi.org/10.1007/s42114-019-00083-x

    Article  CAS  Google Scholar 

  25. Zhang H, Zhong J, Liu Z, Mai J, Liu H, Mai X (2021) Dyed bamboo composite materials with excellent anti-microbial corrosion. Adv Compos Hybrid Mater 4:294–305. https://doi.org/10.1007/s42114-020-00196-8

    Article  CAS  Google Scholar 

  26. Zhang M, Du H, Liu K et al (2021) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4:865–884. https://doi.org/10.1007/s42114-021-00312-2

    Article  CAS  Google Scholar 

  27. Zheng M, Wei Y, Ren J et al (2021) 2-aminopyridine functionalized magnetic core–shell Fe3O4@polypyrrole composite for removal of Mn (VII) from aqueous solution by double-layer adsorption. Sep Purif Technol 277:119455. https://doi.org/10.1016/j.seppur.2021.119455

    Article  CAS  Google Scholar 

  28. Zhu X, Zhang J, Zhou J et al (2021) Adsorption characteristics and conformational transition of polyethylene glycol–maleated rosin polyesters on the water–air surface. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00354-6

    Article  Google Scholar 

  29. Chang B, Li Y, Wang W et al (2021) Impacts of chain extenders on thermal property, degradation, and rheological performance of poly(butylene adipate-co-terephthalate). J Mater Res 36:3134–3144. https://doi.org/10.1557/s43578-021-00308-0

    Article  CAS  Google Scholar 

  30. Al-Itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028

    Article  CAS  Google Scholar 

  31. Malda J, Woodfield TBF, van der Vloodt F et al (2005) The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials 26:63–72. https://doi.org/10.1016/j.biomaterials.2004.02.046

    Article  CAS  Google Scholar 

  32. Platnieks O, Gaidukovs S, Thakur VK, Barkane A, Beluns S (2021) Bio-based poly (butylene succinate): recent progress, challenges and future opportunities. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2021.110855

    Article  Google Scholar 

  33. Qiu S, Zhou Y, Waterhouse GIN et al (2021) Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films. Food Chem. https://doi.org/10.1016/j.foodchem.2020.127487

    Article  Google Scholar 

  34. Hayes DG, Wadsworth LC, Sintim HY et al (2017) Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polym Test 62:454–467. https://doi.org/10.1016/j.polymertesting.2017.07.027

    Article  CAS  Google Scholar 

  35. Rabnawaz M, Wyman I, Auras R, Cheng S (2017) A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chem 19:4737–4753. https://doi.org/10.1039/c7gc02521a

    Article  CAS  Google Scholar 

  36. Wang Y, Wang P, Du Z, Liu C, Shen C, Wang Y (2021) Electromagnetic interference shielding enhancement of poly(lactic acid)-based carbonaceous nanocomposites by poly(ethylene oxide)-assisted segregated structure: a comparative study of carbon nanotubes and graphene nanoplatelets. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00320-2

    Article  Google Scholar 

  37. Wei Y, Luo W, Li X et al (2022) PANI-MnO2 and Ti3C2Tx (MXene) as electrodes for high-performance flexible asymmetric supercapacitors. Electrochim Acta 406:139874. https://doi.org/10.1016/j.electacta.2022.139874

    Article  CAS  Google Scholar 

  38. Wei Y, Zheng M, Luo W et al (2022) All pseudocapacitive MXene-MnO2 flexible asymmetric supercapacitor. J Energy Storage 45:103715. https://doi.org/10.1016/j.est.2021.103715

    Article  Google Scholar 

  39. Cheng XQ, Li S, Bao H et al (2021) Poly(sodium-p-styrenesulfonate)-grafted UiO-66 composite membranes boosting highly efficient molecular separation for environmental remediation. Adv Compos Hybrid Mater 4:562–573. https://doi.org/10.1007/s42114-021-00253-w

    Article  CAS  Google Scholar 

  40. Iwata T (2015) Biodegradable and bio-based polymers: future prospects of eco-friendly plastics. Angew Chem Int Ed 54:3210–3215. https://doi.org/10.1002/anie.201410770

    Article  CAS  Google Scholar 

  41. Kivade SB, Gunge A, Nagamadhu M, Rajole S (2021) Mechanical and dynamic mechanical behavior of acetylation-treated plain woven banana reinforced biodegradable composites. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00247-8

    Article  Google Scholar 

  42. Ma Y, Zhuang Z, Ma M et al (2019) Solid polyaniline dendrites consisting of high aspect ratio branches self-assembled using sodium lauryl sulfonate as soft templates: synthesis and electrochemical performance. Polymers 182:121808. https://doi.org/10.1016/j.polymer.2019.121808

    Article  CAS  Google Scholar 

  43. Saratale GD, Jung M-Y, Oh M-K (2016) Reutilization of green liquor chemicals for pretreatment of whole rice waste biomass and its application to 2,3-butanediol production. Bioresour Technol 205:90–96. https://doi.org/10.1016/j.biortech.2016.01.028

    Article  CAS  Google Scholar 

  44. Wei Y, Luo W, Zhuang Z et al (2021) Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv Compos Hybrid Mater 4:1082–1091. https://doi.org/10.1007/s42114-021-00323-z

    Article  CAS  Google Scholar 

  45. Zhang J, Li J, Tang Y, Lin L, Long M (2015) Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass. Carbohydr Polym 130:420–428. https://doi.org/10.1016/j.carbpol.2015.05.028

    Article  CAS  Google Scholar 

  46. Zhuang Z, Wang W, Wei Y, Li T, Ma M, Ma Y (2021) Preparation of polyaniline nanorods/manganese dioxide nanoflowers core/shell nanostructure and investigation of electrochemical performances. Adv Compos Hybrid Mater 4:938–945. https://doi.org/10.1007/s42114-021-00225-0

    Article  CAS  Google Scholar 

  47. Ouyang L, Huang W, Huang M, Qiu B (2022) Polyaniline improves granulation and stability of aerobic granular sludge. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00450-1

    Article  Google Scholar 

  48. Si Y, Li J, Cui B et al (2022) Janus phenol-formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00446-x

    Article  Google Scholar 

  49. Zhao Z, Zhao R, Bai P et al (2022) AZ91 alloy nanocomposites reinforced with Mg-coated graphene: Phases distribution, interfacial microstructure, and property analysis. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.163484

    Article  Google Scholar 

  50. Li Z, Li Y, Lei H et al (2022) The effect of synergistic/inhibitory mechanism of terephthalic acid and glycerol on the puncture, tearing, and degradation properties of PBSeT copolyesters. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00405-y

    Article  Google Scholar 

  51. Yu S, Cui J, Wang X, Zhong C, Li Y, Yao J (2020) Preparation of sebacic acid via alkali fusion of castor oil and its several derivatives. J Am Oil Chem Soc 97:663–670. https://doi.org/10.1002/aocs.12342

    Article  CAS  Google Scholar 

  52. Moreau C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing. Polym Chem. https://doi.org/10.1002/chin.200431251

    Article  Google Scholar 

  53. Papageorgiou GZ, Papageorgiou DG, Terzopoulou Z, Bikiaris DN (2016) Production of bio-based 2,5-furan dicarboxylate polyesters: Recent progress and critical aspects in their synthesis and thermal properties. Eur Polym J 83:202–229. https://doi.org/10.1016/j.eurpolymj.2016.08.004

    Article  CAS  Google Scholar 

  54. Burgess SK, Leisen JE, Kraftschik BE, Mubarak CR, Kriegel RM, Koros WJ (2014) Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47:1383–1391. https://doi.org/10.1021/ma5000199

    Article  CAS  Google Scholar 

  55. Zhu J, Cai J, Xie W et al (2013) Poly(butylene 2,5-furan dicarboxylate), a biobased alternative to PBT: synthesis, physical properties, and crystal structure. Macromolecules 46:796–804. https://doi.org/10.1021/ma3023298

    Article  CAS  Google Scholar 

  56. Burgess SK, Mikkilineni DS, Yu DB et al (2014) Water sorption in poly(ethylene furanoate) compared to poly(ethylene terephthalate). Part 2: Kinetic sorption. Polymers 55:6870–6882. https://doi.org/10.1016/j.polymer.2014.10.065

    Article  CAS  Google Scholar 

  57. Papageorgiou GZ, Tsanaktsis V, Bikiaris DN (2014) Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN. Phys Chem Chem Phys 16:7946–7958. https://doi.org/10.1039/c4cp00518j

    Article  CAS  Google Scholar 

  58. Wang J, Liu X, Jia Z, Sun L, Zhang Y, Zhu J (2018) Modification of poly(ethylene 2,5-furandicarboxylate) (PEF) with 1,4-cyclohexanedimethanol: influence of stereochemistry of 1,4-cyclohexylene units. Polymers 137:173–185. https://doi.org/10.1016/j.polymer.2018.01.021

    Article  CAS  Google Scholar 

  59. Wang J, Liu X, Zhang Y, Liu F, Zhu J (2016) Modification of poly(ethylene 2,5-furandicarboxylate) with 1,4-cyclohexanedimethylene: Influence of composition on mechanical and barrier properties. Polymers 103:1–8. https://doi.org/10.1016/j.polymer.2016.09.030

    Article  CAS  Google Scholar 

  60. Wang J, Liu X, Zhu J, Jiang Y (2017) Copolyesters based on 2,5-Furandicarboxylic Acid (FDCA): effect of 2,2,4,4-tetramethyl-1,3-cyclobutanediol units on their properties. Polymers. https://doi.org/10.3390/polym9090305

    Article  Google Scholar 

  61. Ma J, Yu X, Xu J, Pang Y (2012) Synthesis and crystallinity of poly(butylene 2,5-furandicarboxylate). Polymer 53:4145–4151. https://doi.org/10.1016/j.polym.2012.07.022

    Article  CAS  Google Scholar 

  62. Hu H, Zhang R, Shi L, Ying WB, Wang J, Zhu J (2018) Modification of poly(butylene 2,5-furandicarboxylate) with lactic acid for biodegradable copolyesters with good mechanical and barrier properties. Ind Eng Chem Res 57:11020–11030. https://doi.org/10.1021/acs.iecr.8b02169

    Article  CAS  Google Scholar 

  63. Hu H, Zhang R, Wang J, Ying WB, Zhu J (2018) Fully bio-based poly(propylene succinate-co-propylene furandicarboxylate) copolyesters with proper mechanical, degradation and barrier properties for green packaging applications. Eur Polym J 102:101–110. https://doi.org/10.1016/j.eurpolymj.2018.03.009

    Article  CAS  Google Scholar 

  64. Papageorgiou GZ, Papageorgiou DG, Tsanaktsis V, Bikiaris DN (2015) Synthesis of the bio-based polyester poly(propylene 2,5-furan dicarboxylate). Comparison of thermal behavior and solid state structure with its terephthalate and naphthalate homologues. Polymers 62:28–38. https://doi.org/10.1016/j.polymer.2015.01.080

    Article  CAS  Google Scholar 

  65. Vannini M, Marchese P, Celli A, Lorenzetti C (2015) Fully biobased poly(propylene 2,5-furandicarboxylate) for packaging applications: excellent barrier properties as a function of crystallinity. Green Chem 17:4162–4166. https://doi.org/10.1039/c5gc00991j

    Article  CAS  Google Scholar 

  66. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J App Polym Sci 116:2658–2667. https://doi.org/10.1002/app.31787

    Article  CAS  Google Scholar 

  67. Li Z, Li Y, Dong X et al (2021) Synthesis, characterization and properties of poly(butanediol sebacate-butanediol terephthalate) (PBSeT) copolyesters using glycerol as cross-linking agent. Mater Today Commun. https://doi.org/10.1016/j.mtcomm.2021.102557

    Article  Google Scholar 

  68. Heidarzadeh N, del Valle LJ, Franco L, Puiggali J (2020) Improvement of biodegradability and biocompatibility of electrospun scaffolds of poly(butylene terephthalate) by incorporation of sebacate units. Macromol Res 28:23–32. https://doi.org/10.1007/s13233-020-8009-0

    Article  CAS  Google Scholar 

  69. Lu J, Wu L, Li B-G (2017) High molecular weight polyesters derived from biobased 1,5-pentanediol and a variety of aliphatic diacids: synthesis, characterization, and thermo-mechanical properties. ACS Sustain Chem Eng 5:6159–6166. https://doi.org/10.1021/acssuschemeng.7b01050

    Article  CAS  Google Scholar 

  70. Xie H, Wu L, Li B-G, Dubois P (2018) Poly(ethylene 2,5-furandicarboxylate-mb-poly(tetramethylene glycol)) multiblock copolymers: from high tough thermoplastics to elastomers. Polymers 155:89–98. https://doi.org/10.1016/j.polymer.2018.09.033

    Article  CAS  Google Scholar 

  71. Konstantopoulou M, Terzopoulou Z, Nerantzaki M et al (2017) Poly(ethylene furanoate-co-ethylene terephthalate) biobased copolymers: synthesis, thermal properties and cocrystallization behavior. Eur Polym J 89:349–366. https://doi.org/10.1016/j.eurpolymj.2017.02.037

    Article  CAS  Google Scholar 

  72. Huang F, Wu L, Li B-G (2020) Sulfonated biodegradable PBAT copolyesters with improved gas barrier properties and excellent water dispersibility: from synthesis to structure-property. Polym Degrad Stab. https://doi.org/10.1016/j.polymdegradstab.2020.109391

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Taif University Researchers Supporting Project Number (TURSP-2020/27), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingchun Li or Zhanhu Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Li, Y., Ye, X. et al. Synthesis and characterization of 2,5-furandicarboxylic acid poly(butanediol sebacate-butanediol) terephthalate (PBSeT) segment copolyesters with excellent water vapor barrier and good mechanical properties. J Mater Sci 57, 10997–11012 (2022). https://doi.org/10.1007/s10853-022-07269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07269-7

Navigation