Skip to main content

Advertisement

Log in

Poly(sodium-p-styrenesulfonate)-grafted UiO-66 composite membranes boosting highly efficient molecular separation for environmental remediation

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The lack of highly permeable and selective separation membranes hampers the application of the energy-efficient membrane separation process for water remediation and CO2 capture in molecular scale. Nanoparticles have been widely applied for tailoring pore structures and surface properties of the molecular separation membranes, thereby enhancing separation performance. However, limited by non-ideal nanoparticle aggregation, it remains a big challenge to fabricate such membranes on a large scale. Herein, we designed a kind of highly dispersed nanoparticles through grafting poly(sodium-p-styrenesulfonate) (PSS) on metal organic frameworks UiO-66 and deployed them for tailoring structure of polyelectrolyte membrane (PEM) for water remediation and Pebax (PEBA) symmetrical membranes for CO2 capture, respectively. Because of electrostatic interaction, the PSS-grafted-UiO-66 (UiO-66-PSS) demonstrated nearly 100% dispersion in water and had an average particle size around 200 nm. Most interestingly, the introduction of the UiO-66-PSS finely tailored the affinity between membranes and target molecules, and the molecular structure of both PEM and PEBA membranes, thereby tripling the permeances of the membranes and slightly improving the selectivity of the membranes meanwhile. The PEM/UiO-66-PSS membranes demonstrated pure water permeance as high as 27.3 L m−2 h−1 bar−1 with MgSO4 rejection above 98.7%. For CO2 capture, the PEBA/UiO-66-PSS membranes exhibited 414.5 barrer with selectivity about 53.8. Taken together, the highly dispersed UiO-66-PSS shows strong promise in constructing molecular separation membranes with high separation performance for environmental remediation.

Graphical abstract

The highly dispersed PSS-grafted-UiO-66 finely tailored membrane structures of PEM membranes and the PEBA membranes and enhanced affinity between the target molecules and the aforementioned membranes, thereby tripling membrane permeances and improving the membrane selectivity slightly. The obtained PEM/UiO-66-PSS membranes and PEBA/UiO-66-PSS membranes show strong promise in water remediation and CO2 capture, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhu B, Jiang X, He SS, Yang XB, Long J, Zhang YQ, Shao L (2020) Rational design of poly(ethyleneoxide) based membranes for sustainable CO2 capture. J Mater Chem A 8:24233–24252. https://doi.org/10.1039/D0TA08806D

    Article  CAS  Google Scholar 

  2. Sholl DS, Lively RP (2016) Seven chemical separations to change the world. Nature 532:435–437. https://doi.org/10.1038/532435a

    Article  Google Scholar 

  3. Pendergast MM, Hoek EM (2011) A review of water treatment membrane nanotechnologies. Energ Environ Sci 4:1946–1971. https://doi.org/10.1039/C0EE00541J

    Article  CAS  Google Scholar 

  4. Macedonio F, Drioli E (2017) Membrane engineering for green process engineering. Engineering 3:290–298. https://doi.org/10.1016/J.ENG.2017.03.026

    Article  Google Scholar 

  5. Yuan Y, Yu Q, Wen J, LiC GZ, Wang X, Wang N (2019) Ultrafast and highly selective uranium extraction from seawater by hydrogel-like spidroin-based protein fiber. Angew Chem Int Edit 58:11785–11790. https://doi.org/10.1002/anie.201906191

    Article  CAS  Google Scholar 

  6. Zhao YY, Yang XB, Yan LL, Ba YP, Li SW, Sorokin P, Shao L (2020) Biomimetic nanoparticle-engineered superwettable membranes for efficient oil/water separation. J Membr Sci 618:118525. https://doi.org/10.1016/j.memsci.2020.118525

    Article  CAS  Google Scholar 

  7. He F, Han MC, Zhang J, Wang ZX, Wu XC, Zhou YY, Jiang LF, Peng SQ, Li YX (2020) A simple, mild and versatile method for preparation of photothermal woods toward highly efficient solar steam generation. Nano Energy 71:104650. https://doi.org/10.1016/j.nanoen.2020.104650

    Article  CAS  Google Scholar 

  8. Koros WJ, Zhang C (2017) Materials for next-generation molecularly selective synthetic membranes. Nat Mater 16:289–297. https://doi.org/10.1038/nmat4805

    Article  CAS  Google Scholar 

  9. Shen L, Tian L, Zuo J, Zhang X, Sun SP, Wang Y (2019) Developing high-performance thin-film composite forward osmosis membranes by various tertiary amine catalysts for desalination. Adv Compos Hybrid Mater 2:51–69. https://doi.org/10.1007/s42114-018-0070-1

    Article  CAS  Google Scholar 

  10. Lively RP, Sholl DS (2017) From water to organics in membrane separations. Nat Mater 16:276–279. https://doi.org/10.1038/nmat4860

    Article  CAS  Google Scholar 

  11. Cheng XQ, Wang ZX, Jiang X, Li T, Lau CH, Guo Z, Ma J, Shao L (2018) Towards sustainable ultrafast molecular-separation membranes: from conventional polymers to emerging. Prog Mater Sci 92:258–283. https://doi.org/10.1016/j.pmatsci.2017.10.006

    Article  CAS  Google Scholar 

  12. Wang Z, Yang HC, He F, Peng S, Li Y, Shao L, Darling SB (2019) Mussel-inspired surface engineering for water-remediation materials. Matter 1:115–155. https://doi.org/10.1016/j.matt.2019.05.002

  13. Sun C, Wen B, Bai B (2015) Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci Bull 60:1807–1823. https://doi.org/10.1007/s11434-015-0914-9

    Article  CAS  Google Scholar 

  14. Zhang Y, Cheng X, Jiang X, Urban JJ, Lau CH, Liu S, Shao L (2020) Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Mater Today 36:40–47. https://doi.org/10.1016/j.mattod.2020.02.002

    Article  CAS  Google Scholar 

  15. Galizia M, Chi WS, Smith ZP, Merkel TC, Baker RW, Freeman BD (2017) 50th anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules 50:7809–7843. https://doi.org/10.1021/acs.macromol.7b01718

  16. Huang JH, Cheng XQ, Zhang Y, Wang K, Liang H, Wang P, Ma J, Shao L (2020) Polyelectrolyte grafted MOFs enable conjugated membranes for molecular separations in dual solvent systems. Cell Rep Physical Sci 1100034. https://doi.org/10.1016/j.xcrp.2020.100034

  17. Lu Y, Zhang H, Chan JY, Ou R, Zhu H, Forsyth M, Marijanovic EM, Doherty CM, Marriott PJ, Holl MMB, Wang H (2019) Homochiral MOF–polymer mixed matrix membranes for efficient separation of chiral molecules. Angew Chem Int Edit 58:16928–16935. https://doi.org/10.1002/anie.201910408

  18. Wang ZX, Ji SQ, He F, Cao MY, Peng SQ, Li YX (2018) One-step transformation of highly hydrophobic membranes into superhydrophilic and underwater superoleophobic ones for high-efficiency separation of oil-in-water emulsions. J Mater Chem A 6:3391–3396. https://doi.org/10.1039/C7TA10524J

  19. Dashairya L, Sahu A, Saha P (2019) Stearic acid treated polypyrrole-encapsulated melamine formaldehyde superhydrophobic sponge for oil recovery. Adv Compos Hybrid Mater 2:70–82. https://doi.org/10.1007/s42114-019-00084-w

    Article  CAS  Google Scholar 

  20. Liu C, Lin Y, Dong YF, Wu YK, Bao Y, Yan HX, Ma JZ (2020) Fabrication and investigation on Ag nanowires/TiO2 nanosheets/graphene hybrid nanocomposite and its water treatment performance. Adv Compos Hybrid Mater 3:402–414. https://doi.org/10.1007/s42114-020-00164-2

    Article  CAS  Google Scholar 

  21. Wang Y, Xie W, Liu H, Gu H (2020) Hyperelastic magnetic reduced graphene oxide three-dimensional framework with superb oil and organic solvent adsorption capability. Adv Compos Hybrid Mater 3:473–484. https://doi.org/10.1007/s42114-020-00191-z

    Article  CAS  Google Scholar 

  22. Wang J, Liu Y, Fan Z, Wang W, Wang B, Guo Z (2020) Ink-based 3D printing technologies for graphene-based materials: a review. Adv Compos Hybrid Mater 2:1–33. https://doi.org/10.1007/s42114-018-0067-9

    Article  CAS  Google Scholar 

  23. Hu H, Ding F, Ding H, Liu J, Sun L (2020) Sulfonated poly(fluorenyl ether ketone)/sulfonated α-zirconium phosphate nanocomposite membranes for proton exchange membrane fuel cells. Adv Compos Hybrid Mater 3:498–507. https://doi.org/10.1007/s42114-020-00182-0

    Article  CAS  Google Scholar 

  24. Guo J, Bao HF, Zhang YQ, Shen X, Kim JK, Ma J, Shao L (2020) Unravelling intercalation-regulated nanoconfinement for durably ultrafast sieving graphene oxide membranes. J Membr Sci 619:118791. https://doi.org/10.1016/j.memsci.2020.118791

    Article  CAS  Google Scholar 

  25. Görgün N, ÖzerA Ç, Polat K (2020) A new catalyst material from electrospun PVDF-HFP nanofibers by using magnetron-sputter coating for the treatment of dye-polluted waters. Adv Compos Hybrid Mater 2:423–430. https://doi.org/10.1007/s42114-019-00105-8

    Article  CAS  Google Scholar 

  26. Lau CH, Konstas K, Thornton AW, Liu AC, Mudie S, Kennedy DF, Howard SC, Hill AJ, Hill MR (2015) Gas-separation membranes loaded with porous aromatic frameworks that improve with age. Angew Chem Int Edit 54:2669–2673. https://doi.org/10.1002/anie.201410684

    Article  CAS  Google Scholar 

  27. Lau CH, Mulet X, Konstas K, Doherty CM, Sani MA, Separovic F, Hill MR, Wood CD (2016) Hypercrosslinked additives for ageless gas-separation membranes. Angew Chem Int Edit 55:1998–2001. https://doi.org/10.1002/anie.201508070

    Article  CAS  Google Scholar 

  28. Zhao J, Xie K, Liu L, Liu M, Qiu W, Webley PA (2019) Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite. J Membr Sci 583:23–30. https://doi.org/10.1016/j.memsci.2019.03.073

    Article  CAS  Google Scholar 

  29. He SS, Jiang X, Li SW, Ran FT, Long J, Shao L (2020) Intermediate thermal manipulation of polymers of intrinsic microporous (PIMs) membranes for gas separations. AIChE J 66:e1654. https://doi.org/10.1002/aic.16543

    Article  CAS  Google Scholar 

  30. Yang F, Sadam H, Zhang YQ, Xia JZ, Yang XB, Long J, Li SW, Shao L (2020) A de novo sacrificial-MOF strategy to construct enhanced-flux nanofiltration membranes for efficient dye removal. Chem Eng Sci 225:115845. https://doi.org/10.1016/j.ces.2020.115845

    Article  CAS  Google Scholar 

  31. Cheng XQ, Sun ZK, Yang XB, Li ZX, Zhang YJ, Wang P, Liang H, Ma J, Shao L (2020) Construction of superhydrophilic hierarchical polyacrylonitrile nanofiber membranes by in situ asymmetry engineering for unprecedently ultrafast oil–water emulsion separation. J Mater Chem A 8:16933–16942. https://doi.org/10.1039/d0ta03011b

    Article  CAS  Google Scholar 

  32. Ni L, Liao Z, Chen K, Xie J, Li Q, Qi J, Sun X, Wang L, Li J (2020) Defect-engineered UiO-66-NH2 modified thin-film nanocomposite membrane with enhanced nanofiltration performance. Chem Commun 56:8372–8375. https://doi.org/10.1039/D0CC01556C

    Article  CAS  Google Scholar 

  33. Li Q, Liao Z, Xie J, Ni L, Wang C, Qi J, Sun X, Wang L, Li J (2020) Enhancing nanofiltration performance by incorporating tannic acid modified metal-organic frameworks into thin-film nanocomposite membrane. Environ Res 191:110215. https://doi.org/10.1016/j.envres.2020.110215

  34. Molavi H, Shojaei A (2019) Mixed-matrix composite membranes based on UiO-66-derived MOFs for CO2 separation. ACS Appl Mater Inter 11:9448–9461. https://doi.org/10.1021/acsami.8b20869

  35. Jiang X, Li SW, He SS, Bai YP, Shao L (2018) Interface manipulation of CO2–philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture. J Mater Chem A 6:15064–15073. https://doi.org/10.1039/C8TA03872D

    Article  CAS  Google Scholar 

  36. Sutrisna PD, Hou J, Zulkifli MY, Li H, Zhang Y, Liang W, D’Alessandro DM, Chen V (2018) Surface functionalized UiO-66/Pebax-based ultrathin composite hollow fiber gas separation membranes. J Mater Chem A 6:918–931. https://doi.org/10.1039/C7TA07512

    Article  CAS  Google Scholar 

  37. Liu G, Chernikova V, Liu Y, Zhang K, Belmabkhout Y, Shekhah O, Zhang C, Yi S, Eddaoudi M, Koros WJ (2018) Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat Mater 17:283–289. https://doi.org/10.1038/s41563-017-0013-1

    Article  CAS  Google Scholar 

  38. Cheng XQ, Qin, Ye YY, Chen XY, Wang K, Zhang Y, Figoli A, Drioli E (2020)  Finely tailored pore structure of polyamide nanofiltration membranes for highly-efficient application in water treatment. Chem Eng J 127976. https://doi.org/10.1016/j.cej.2020.127976

  39. Xie K, Fu Q, He Y, Kim J, Goh SJ, Nam E, Qiao GG, Webley PA (2015) Synthesis of well dispersed polymer grafted metal–organic framework nanoparticles. Chem Commun 51:15566–15569. https://doi.org/10.1039/C5CC06694H

    Article  CAS  Google Scholar 

  40. Xie K, Fu Q, Kim J, Lu H, He Y, Zhao Q, Scofield J, Webley PA, Qiao GG (2017) Increasing both selectivity and permeability of mixed-matrix membranes: sealing the external surface of porous MOF nanoparticles. J Membr Sci 535:350–356. https://doi.org/10.1016/j.memsci.2017.04.022

  41. Katz MJ, Brown ZJ, Colon YJ, Siu PW, Scheidt KA, Snurr RQ, Hupp JT, Farha OK (2013) A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem Commun 49:9449–9451. https://doi.org/10.1039/C3CC46105J

    Article  CAS  Google Scholar 

  42. Sun ZK, Zhou Y, Jiao Y, Cheng XQ, Zhang Y, Wang P, Liang H, Yang X, Drioli E, Figoli A, Ma J, Shao L (2020) Multi-hydrophilic functional network enables porous membranes excellent anti-fouling performance for highly efficient water remediation. J Membr Sci 608:118191. https://doi.org/10.1016/j.memsci.2020.118191

    Article  CAS  Google Scholar 

  43. Kang S, Zhang C, Xiao G, Yan D, Sun G (2009) Synthesis and properties of soluble sulfonated polybenzimidazoles from 3,3′-disulfonate-4,4′-dicarboxylbiphenyl as proton exchange membranes. J Membr Sci 334:91–100. https://doi.org/10.1016/j.memsci.2009.02.021

    Article  CAS  Google Scholar 

  44. Yamaguchi D, Watanabe K, Fukumi S (2016) Hydrolysis of cellulose by a mesoporous carbon-Fe2(SO4)3/γ-Fe2O3 nanoparticle-based solid acid catalyst. Sci Rep-UK 6:20327. https://doi.org/10.1038/srep20327

    Article  CAS  Google Scholar 

  45. Pongilat R, Franger S, Nallathamby K (2018) Functionalized carbon as polysulfide traps for advanced lithium–sulfur batteries. J Phys Chem C 122:5948–5955. https://doi.org/10.1021/acs.jpcc.8b00605

  46. Xie Y, Yan B, Xu H, Chen J, Liu Q, Deng Y, Zeng H (2014) Highly regenerable mussel-inspired Fe3O4@ polydopamine-Ag core–shell microspheres as catalyst and adsorbent for methylene blue removal. ACS Appl Mater Inter 6:8845–8852. https://doi.org/10.1021/am501632f

  47. Singh R, Misra V (2016) Stabilization of zero-valent iron nanoparticles: role of polymers and surfactants. Handbook of nanoparticles 985–1007. https://doi.org/10.1007/978-3-319-13188-7_44-2

  48. Cheng X, Jiang X, Zhang Y, Lau CH, Xie Z, Ng D, Smith SJD, Hill MR, Shao L (2017) Building additional passageways in polyamide membranes with hydrostable metal organic frameworks to recycle and remove organic solutes from various solvents. ACS Appl Mater Inter 9:38877–38886. https://doi.org/10.1021/acsami.7b07373

    Article  CAS  Google Scholar 

  49. Zhang YQ, Guo J , Han G, Bai YP, Ge QC, Ma J, Lau CH, Shao L (2021) Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Sci Adv 7:eabe8706. https://doi.org/10.1126/sciadv.abe8706

  50. Tan Z, Chen S, Peng X, Zhang L, Gao C (2018) Polyamide membranes with nanoscale turing structures for water purification. Science 360:518–521. https://doi.org/10.1126/science.aar6308

  51. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310. https://doi.org/10.1142/9789814287005_0035

    Article  CAS  Google Scholar 

  52. Ma D, Peh SB, Han G, Chen SB (2017) Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal–organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection. ACS Appl Mater Inter 9:7523–7534. https://doi.org/10.1021/acsami.6b14223

    Article  CAS  Google Scholar 

  53. He Y, Tang YP, Ma D, Chung TS (2017) UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal. J Membr Sci 541:262–270. https://doi.org/10.1016/j.memsci.2017.06.061

    Article  CAS  Google Scholar 

  54. Cheng XQ, Shao L, Lau CH (2015) High flux polyethylene glycol based nanofiltration membranes for water environmental remediation. J Membr Sci 476:95–104. https://doi.org/10.1016/j.memsci.2014.11.020

  55. Kordjazi S, Kamyab K, Hemmatinejad N (2020) Super-hydrophilic/oleophobic chitosan/acrylamide hydrogel: an efficient water/oil separation filter. Adv Compos Hybrid Mater 3:167–176. https://doi.org/10.1007/s42114-020-00150-8

    Article  CAS  Google Scholar 

  56. Yang XB, Yuan LC, Zhao YY, Yan LL, Bai YP, Ma J, Li SW, Sorokin P, Shao L (2020) Mussel-inspired structure evolution customizing membrane interface hydrophilization. J Membr Sci 612:118471. https://doi.org/10.1016/j.memsci.2020.118471

    Article  CAS  Google Scholar 

  57. Denny JMS, Cohen SM (2015) In situ modification of metal–organic frameworks in mixed-matrix membranes. Angew Chem Int Edit 127:9157–9160. https://doi.org/10.1002/anie.201504077

  58. Jiang Z, Miao J, He Y, Hong X, Tu K, Wang X, Chen S, Yang H, Zhang L, Zhang R (2019) A pH-stable positively charged composite nanofiltration membrane with excellent rejection performance. RSC Adv 9:37546–37555. https://doi.org/10.1039/C9RA06528H

    Article  CAS  Google Scholar 

  59. Dechnik J, Gascon J, Doonan CJ, Janiak C, Sumby CJ (2017) Mixed-matrix membranes Angew Chem Int Edit 56:9292–9310. https://doi.org/10.1002/anie.201701109

    Article  CAS  Google Scholar 

  60. Su NC, Smith ZP, Freeman BD, Urban JJ (2015) Size-dependent permeability deviations from Maxwell’s model in hybrid cross-linked poly(ethylene glycol)/silica nanoparticle membranes. Chem Mater 27:2421–2429. https://doi.org/10.1021/cm504463c

    Article  CAS  Google Scholar 

  61. Lu W, Yuan D, Sculley J, Zhao D, Krishna R, Zhou HC (2011) Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. J Am Chem Soc 133:18126–18129. https://doi.org/10.1021/ja2087773

    Article  CAS  Google Scholar 

  62. Rezakazemi M, Ebadi AA, Montazer-Rahmati MM, Ismail AF, Matsuura T (2014) State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): an overview on current status and future directions. Prog Polym Sci 39:817–861. https://doi.org/10.1016/j.progpolymsci.2014.01.003

    Article  CAS  Google Scholar 

  63. Yong WF, Lee ZK, Chung TS, Weber M, Staudt C, Maletzko C (2016) Blends of a polymer of intrinsic microporosity and partially sulfonated polyphenylenesulfone for gas separation. Chemsuschem 9:1953–1962. https://doi.org/10.1002/cssc.201600354

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (21905067, 21878062), China Postdoctoral Science Foundation (2018M640295), the National Key Research and Development Program of China (2018YFC0408001), the Shandong Province Natural Science Foundation (ZR2018BEM031), National Regional Innovation Foundation (2017QYCX09), the Fundamental Research Funds for the Central Universities (Grant No. HIT.NSRIF.2019072), the Natural Science Foundation of Heilongjiang Province for Distinguished Young Scholars (JQ2020B0010), and the State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology) (No. 2020DX02).

Author information

Authors and Affiliations

Authors

Contributions

XQC and LS designed the experiments, and XQC and SWL performed the experiments. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. These authors (XQC and SWL) contributed equally.

Corresponding authors

Correspondence to Xi Quan Cheng or Lu Shao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3321 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X.Q., Li, S., Bao, H. et al. Poly(sodium-p-styrenesulfonate)-grafted UiO-66 composite membranes boosting highly efficient molecular separation for environmental remediation. Adv Compos Hybrid Mater 4, 562–573 (2021). https://doi.org/10.1007/s42114-021-00253-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00253-w

Keywords

Navigation